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In this paper, we consider a family D→T of smooth compact complex curves. Assuming
the general fiber Dt is a smooth plane curve of degree d > 1 we ask the following:

Question. For which degrees d can we guarantee that every �ber is a plane curve?

It is easy to see that d must be prime. Classically, a nonhyperelliptic genus 3 curve is a
canonically embedded degree 4 plane curve, but the canonical map for a hyperelliptic genus
3 curve gives a double cover of a conic. Similarly, when d is composite it is well understood
how to degenerate a degree ab hypersurface in any dimension to a degree a branched cover
of a degree b hypersurface ([19, Ex. 1.59]) so it is necessary to consider prime degrees.

In higher dimensions, Mori asked if being prime is also su�cient.

Question.([26, p. 642]) If n ≥ 3, is every smooth projective limit of prime degree hypersurfaces of
dimension n in Pn+1

ℂ
also a hypersurface in Pn+1

ℂ
?

This has been proven for the primes 2 [4, 15, 17], 3 [9], and 5 [28] in all dimensions, and for
the prime 7 in dimension 3 [28]. Interestingly, the statement is false if the dimension is 1 or
2. The purpose of this paper is to develop and provide evidence for an analogous conjecture
in the case of plane curves.

Gri�n gave an example [10] of a family of smooth plane quintics such that the limit is
hyperelliptic and consequently nonplanar. We generalize this fact by proving that many
prime degrees admit non-planar limits:

Theorem A. For any Markov number d > 2, there is family of smooth plane curves of degree d with
a smooth projective non-planar limit. In particular, for any Markov number p > 2 that is prime there
is a smooth family of prime degree p plane curves with a non-planar central �ber.

Recall that a Markov number is a natural number that appears as a solution to the equation:

a2 + b2 + c2 = 3abc .

The first few Markov numbers are

1,2,5,13,29,34,89, ...

There are infinitely many Markov numbers and the Markov triples are naturally organized
into a binary tree, where every Markov number is obtained from (1,1,1) by repeating a stan-
dard “mutation" process. In this paper, the relation between Markov numbers and plane



curves is the following: the only mildly singular (log terminal and ℚ-Gorenstein) degenera-
tions of P2 are the Manetti surfaces — that is, either a weighted projective space P(a2,b2,c2)
where (a,b ,c ) is a Markov triple, or a partial smoothing of one of these weighted projective
spaces (see §1 for more details).

Motivated by this construction and general results from moduli of stable pairs compacti-
fying the space of pairs (P2,C ), we conjecture the following:

Conjecture B. Any smooth limit of a family of plane curves of prime degree is a Cartier divisor in
a Manetti surface.

Conjecture B implies the following.

Conjecture C. Let p be a prime number that is not a Markov number. Any smooth limit of plane
curves of degree p is a plane curve.

As any smooth limit of a family of curves of degree 2 or 3 is clearly planar, the first primes
to verify the conjecture are p = 5 and p = 7. Our main result is to prove the conjectures in
these cases (see §1 for the notation M (5)).

Theorem D. Every smooth projective limit of a family of degree 5 plane curves is either planar or is
a Cartier divisor in the Manetti surface M (5), and the smooth limits in M (5) are all hyperelliptic.

Theorem E. Every smooth projective limit of a family of degree 7 plane curves is a plane curve.

Verifying Conjectures B and C has strong consequences for the intersection of various loci
in Mg , the moduli space of smooth genus g := g (d ) curves, where g (d ) is the genus of a
smooth degree d plane curve. In particular, Conjecture B places bounds on the gonality of
the curves that can be in the closure of the locus of planar curves, and Conjecture C implies
that for p prime but not a Markov number, the locus of degree p plane curves

Pp ⊂ Mg

is closed. In particular, this implies that the Brill Noether locus of curves of gonality less than
p − 1 does not meet Pp . The following Corollaries are immediate consequences of Theorems
D and E. The first uses that every hyperelliptic genus 6 curve can be written as a limit of a
family of plane quintics (Example 1.11).

Corollary. The closure of P5 in M6 is P6 ∪H6 (where H6 is the hyperelliptic locus).

Corollary. P7 is closed in M15. In particular, a plane septic cannot degenerate to a curve with
gonality less than 6.

By Remark 1.12, Conjecture C would imply that for almost any prime, the locus of plane
curves of that degree is closed in the moduli space of smooth curves.

In §1, we study the Class group, Picard group, and deformations of (divisors on) Manetti
surfaces and prove Theorem A by constructing smooth Cartier divisors in such a degenera-
tion, bounding the gonality of the resulting curves.
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In §2 we propose a general approach to the conjecture by using Hacking’s work [11] on
limits of pairs (P2,C ). To a family of plane curves D→T as above (after a possible base
change of T ) there is an associated threefold pair (X CY,DCY)→T that we call Hacking’s
Calabi-Yau limit (see [11, Defn. 2.4]) satisfying:

(1) for a general fiber t ∈ T we have X CY
t � P2 and Dt � DCY

t , and
(2) over the central fiber 0 ∈ T , the fiber X CY

0 is a log terminal limit of P2 such that
(X CY

0 , 3dD
CY
0 ) is log canonical.

In §2, we provide background on these limits and list all possible X CY
0 when d = 5 or d = 7.

On the other hand, the pair (P2,Dt ) has a limit as a KSBA stable pair, i.e. there is a
threefold (X ,D) with a map to T such that the general fiber is (P2,Dt ) and the central fiber
is an slc pair (X0,D0). Here D0 is (as the notation suggests) the original smooth central fiber.
There is a MMP that interpolates between (X ,D) and (X CY,DCY). Roughly speaking, to
prove Conjecture B it would su�ce to prove that nothing happens in this MMP.

Our approach is to compare the birational surfaces DdDCY. If DCY is not normal, we may
consider the birational map betweenD and the normalizationDnorm ofDCY; DdDnorm→DCY.
There is a common resolution D ss of

DdDnorm→DCY

by taking a log resolution of DCY such that the central fiber D ss
0 is a semistable curve, and

D is obtained from D ss by contracting trees of rational curves in the central fiber. By the
assumption that D0 is smooth, it follows that the dual graph of D ss

0 is a tree and D ss
0 has

exactly one non-rational component. The majority of the paper is dedicated to comparing
the geometry of these surfaces, specifically for degrees 5 and 7.

In §3, we collect general results on the map Dnorm→DCY to study how the geometry of the
central fiber DCY

0 is related to Dnorm
0 . Along the way we prove that any S2 variety is obtained

from its normalization by codimension 1 gluing conditions. In §4 we define the intersection graph
Γ(C ) of an arbitrary curve C which is a bipartite graph that generalizes the dual graph of a
semistable curve. Our main result in §4 is that in an S2 family, the intersection graph of the
central fiber of the normalization can be controlled by the intersection graph of the central
fiber and its multiplicities. This gives the following application of independent interest:

Theorem F. Let Λ be a linear series on a smooth projective surface S with general �ber connected
and smooth. Let C = m1C1 + · · · + mℓCℓ be a possibly nonreduced curve in Λ with multiplicities
m1, . . . ,mℓ . Then any semistable replacement D ′ of C satis�es:(

# of loops in
dual graph of D ′

)
≥

(
# of loops in Γ(C )

)
−

∑
(mi − 1).

In the families we consider, the dual graph of D ss
0 is a tree and all but one component of

D ss
0 are rational. It follows that the intersection graph of Dnorm

0 is a tree and the normalization
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of all but one component is rational. This places strong constraints on the possible intersec-
tion graphs for DCY

0 and singularities of the components of DCY
0 . After collecting necessary

background on curve singularities in §5, in §6 and §7, we reduce the proofs of Theorems D
and E to casework. Using the possible intersection graphs and classification of low degree
rational cuspidal curves, we prove that, for d = 5,7, the the only possible curve configuration
DCY
0 with log canonical threshold ≥ 3

d is DCY
0 = D0 is smooth.

Remark. While this paper focuses on the cases of curves, there is a generalization of Hack-
ing’s work to higher dimensional pairs (Pn ,D) in [6]. The general approach above applies
in this situation, and Hacking’s Calabi-Yau limits are log terminal degenerations X0 of Pn

containing ample divisors D0. If D0 is an ample smooth Cartier divisor, X0 necessarily has
isolated singularities. As in the proof of Theorem A where log terminal degenerations of
P2 with isolated singularities are used to construct non-planar limits of prime degree p > 2
curves, it is of interest to construct log terminal ℚ-Gorenstein degenerations X0 of Pn with
isolated singularities. Certainly, a cone over a Fano hypersurface of degree b in Pn is such an
example, but for a Cartier divisor D0 on X0, projection away from the vertex realizes D0 as a
degree a cover of a degree b hypersurface. If a > 1, this is the limit of a family of degree ab hy-
persurfaces, which is not prime, and if a = 1, D0 is isomorphic to a degree b hypersurface. In
particular, cones are not examples that can contain smooth non-hypersurface limits of prime
degree hypersurfaces. Therefore, we pose the following question, as any answers would give
potential candidates for constructing non-hypersurface limits of prime degree hypersurfaces:

Question. Aside from cones, what are the log terminal ℚ-Gorenstein degenerations of Pn with
isolated singularities?

At least one example is known and interesting in the prime degree case: by work of
Horikawa [14], there are smooth limits of quintic surfaces in P3 that do not embed in P3,
and by [6, Ex. 5.2], these limits embed in a log terminal degeneration of P3 with isolated
singularities.

Acknowledgements. We would like to thank Nathan Chen, Lawrence Ein, Paul Hacking, El-
ham Izadi, David Jensen, János Kollár, Robert Lazarsfeld, Yuchen Liu, Mirko Mauri, James
McKernan, Takumi Murayama, Alex Perry, Stefan Schreieder, and Burt Totaro for their in-
sights and helpful conversations. The second author was partially supported by NSF grant
DMS-1952399.

1. Markov numbers and degenerations of the projective plane

The goal of this section is to prove Theorem A, i.e. to show that for any Markov number d
there is a smooth limit of degree d curves that is not planar. These limits are constructed as
Cartier divisors in degenerations of the plane with isolated singularities. In the process we
study some of the basic properties of the log terminal ℚ-Gorenstein degenerations of P2; e.g.
we compute their Class groups and show that any ample line bundle is globally generated.
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To show these divisors are not planar we give an upper bound on their gonality that is less
than d − 1, the gonality of a smooth degree d plane curve.

We start by considering weighted projective planes that are limits of P2. To start we show
how the Markov equation arises when considering these weighted projective spaces. Suppose
there is a flat family

X→T
over a pointed curve 0 ∈ T such that X is ℚ-Gorenstein and for t ∈ T general Xt � P2

and X0 � P(p ,q ,r ) is a weighted projective plane (with p, q , and r coprime). Then in fact,
(p ,q ,r ) = (a2,b2,c2) and (a,b ,c ) satisfy:
(the Markov equation) a2 + b2 + c2 = 3abc .

All solutions to the Markov equation are obtained by successively permuting or performing
the mutation (a,b ,c ) ↦→ (a,b ,3ab − c ) starting from the minimal solution (1,1,1) [23, 16]. The
first few triples in the Markov tree are

(1,1,1) (1,1,2) (1,2,5)

(1,5,13)
(1,13,34) · · ·

(5,13,194) · · ·

(2,5,29)
(5,29,433) · · ·

(2,5,29) · · ·

corresponding to the weighted projective spaces P2, P(1,1,4), P(1,4,25), . . . .
The fact that Markov numbers show up when considering ℚ-Gorenstein degenerations of

P2 is a consequence of the constancy of the anticanonical volume (−KXt )2 (Kollár addresses
the top self-intersection of a ℚ-Cartier divisor D overT in much more generality in [18, Thm.
11]). Setting the anticanonical volume of P(p ,q ,r ) equal to (−KP2)2 = 9 gives

(p + q + r )2/pqr = 9.

So (p + q + r ) = 3
√
pqr . As p, q , and r are all coprime, the only possibility is they are all

perfect squares. In fact, one can show that for any Markov triple (a,b ,c ) the singularities of
the weighted projective space P(a2,b2,c2) can be independently smoothed in a ℚ-Gorenstein
family which implies that every such weighted projective space is a limit of P2 [12, Cor. 1.2].
These surfaces were first studied by Manetti in [22] and are called Manetti surfaces.

De�nition 1.1 (Manetti surfaces). Fix a Markov triple (a,b ,c ). Define
M (a,b ,c ) := P(a2,b2,c2).

Define M (b ,c ) to be the partial smoothing of the index a2 singularity in M (a,b ,c ) – i.e.
M (b ,c ) has 2 singularities of index b2 and c2. Likewise define M (c ) to be the smoothing of
the index a2 and b2 singularities in M (a,b ,c ).

Remark 1.2. The singularities appearing on Manetti surfaces are examples of T singular-
ities. In the notation of Hacking and Prokhorov, they are T1 singularities, and the versal
ℚ-Gorenstein deformation space of such a singularity is one-dimensional (c.f. [12, Page 4]),
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so any non-trivial deformation of such a singular point smooths it completely. Throughout
this section, we will therefore use the terminology partial smoothing of a Manetti surface M0

to mean a one parameter flat family M over a smooth pointed curve 0 ∈ T such that M has
ℚ-Gorenstein singularities, M0 is the fiber over 0 ∈ T , and for any singular point in M0 the
local deformation of the singularity is either a smoothing or a trivial deformation.

Example 1.3. The mutation process in the Markov tree describes how to “connect” two
weighted projective degenerations of P2 in a family and how to obtain the various partial
smoothings. Let (a,b ,c ) be a Markov triple and let (a,b ,c ′ = 3ab − c ) be the Markov triple
obtained by a mutation. Consider the degree c embedding of the weighted projective space
M (a,b ,c ) = P(a2,b2,c2) ↩→ P(a2,b2,c ′,c ) given by [x0 : x1 : x2] ↦→ [xc0,x

c
1,x0x1,x2]. Let

[y0 : y1 : y2 : y3] be the weighted coordinates on P(a2,b2,c ′,c ). The image of M (a,b ,c ) is
given by y0y1 = y c2. Similarly, the degree c ′ embedding ofM (a,b ,c ′) can be given by y0y1 = y c

′

3
in the same weighted projective space.

Consider the family

Ms ,t = (y0y1 = s y c2 + t y
c ′
3 ) ⊂ P(a2,b2,c ′,c ) × A2

s ,t .

When s ≠ 0, Ms ,0 � M (a,b ,c ), and when t ≠ 0, M0,t � M (a,b ,c ′) by construction. When
s t ≠ 0, Ms ,t � M (a,b): as the partial derivatives of the defining equation do not simulta-
neously vanish, Ms ,t is quasi-smooth and therefore can only acquire singularities at the four
isolated singular points of the ambient space P(a2,b2,c ′,c ). The equation avoids the singu-
larities of index c ′ and c , so can have at most two singularities at the points of index a2 and
b2. In a neighborhood of [1 : 0 : 0 : 0], the surface Ms ,t is defined by y1 = s y c2 + t y

c ′
3 , so has a

singularity of the form 1
a2 (c

′,c ) � 1
a2 (b

2,c2). Similarly, at the point [0 : 1 : 0 : 0], the surface
Ms ,t has a singularity of the 1

b2 (a
2,c2). Therefore, for s t ≠ 0, Ms ,t � M (a,b) as claimed.

In fact, Hacking and Prokhorov prove that every log terminal ℚ-Gorenstein degeneration
of P2 is a Manetti surface.

Theorem 1.4 ([12, Cor. 1.2]). The log-terminal ℚ-Gorenstein degenerations of P2 are precisely the
Manetti surfaces.

Let M be a partial smoothing of a Manetti surface M0 over a smooth pointed curve. If
Mt is a general fiber of M , we say a divisorial sheaf OM0 (D0) on M0 extends to Mt if there
is a divisorial sheaf OM (D ′) on M such that OM (D ′) |M0 � OM0 (D0). We call OM (D ′) |Mt

the extension of OM0 (D0) to Mt . The previous Lemma shows that any divisorial sheaf on
M0 that is Cartier at the smoothed singularities extends to Mt . A priori, such an extension
is not unique, but once we prove that any Manetti surface has class group ℤ and that the
intersection numbers are preserved in partial smoothings, it follows that the extensions are
unique.

Lemma 1.5. Let M0 be a log-terminal ℚ-Gorenstein degeneration of P2, and let M be a 1-parameter
ℚ-Gorenstein partial smoothing of M0. If O(D0) is a divisorial sheaf on M0 that is locally free at
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the smoothed singularities then there is a base change T ′→T such that O(D0) extends to a divisorial
sheaf on M ×T T ′.

Proof. We show that the obstruction to extending OM0 (D0) vanishes. Assume O(D0) extends
to a divisorial sheaf O(D0,n) on an infinitesimal deformation Mn of M0 over ℂ[t ]/tn . The
obstruction to extending O(D0,n) to a divisorial sheaf on Mn+1 over ℂ[t ]/tn+1 is a class in

Ext2OMn
(OMn (D0,n),OM0 (D0))

(see e.g. [29, Tag 0ECH]). The local-to-global spectral sequence shows that all the obstruc-
tions are local and supported at the non-smoothed points (H 2(Mn ,Hom(O(D0,n),O(D0))) =
H 2(M0,OM0) = 0, and Ext1(O(D0,n),O(D0)) is supported on the non-smoothed points). So
the obstruction lives in

H 0(Mn ,Ext2(O(D0,n),O(D0)))
This shows the obstructions are local and supported at the non-smoothed point. But locally
at this point, the deformation of M0 is trivial, thus there is no local obstruction and O(D0,n)
extends. Lastly, it may be necessary a priori to make a base changeT ′→T to make the above
deformation algebraic. �

Theorem 1.6. Let M0 be a ℚ-Gorenstein degeneration of P2.

(1) Cl(M0) = ℤ and Pic(M0) = ℤ. We write OM0 (1) for the positive generator of Cl(M0).
(2) If A is the direct sum of the local class groups at the singular points of M0, then the sequence:

0→Pic(M0)→Cl(M0)→A→0

is exact. In particular, the map from Pic(M0) to Cl(M0) is multiplication by U2 = |A |.
(3) With the notation from (2), OM0 (1) has self intersection number 1/U2.
(4) Let M → T be a 1-parameter ℚ-Gorenstein partial smoothing of M0. Let B be the local class

group of the smoothed singularities and let V =
√
|B | ∈ ℤ. A divisor D0 ∈ Cl(M0) extends to a

divisor D = DT ′ on M ×T T ′ for a base change T ′→ T if and only ifOM0 (D0) = OM0 (mV )
for some integer m. Furthermore, over a general point, the extension D is in |OMt (m) |.

(5) If D, D ′ are two ℚ-Cartier Weil divisors on M then the intersection numbers (D |Mt ) · (D ′|Mt )
are independent of t ∈ T .

Proof. We know thatM0 is a partial smoothing of a weighted projective space P := P(a2,b2,c2).
For weighted projective spaces the map from the class group to the local class groups is
surjective. Thus it follows from Lemma 1.5 that the map

Cl(M0)→A

is surjective, which shows the sequence in (2) is exact.

The divisor O(−KP) = OP(3abc ) extends to the divisor KM0 on M0. Let B (resp. A) be
the local class group of the smoothed (resp. unsmoothed) singularities. By Lemma 1.5,
OP( |B |) extends to M0. Set V =

√
|B |, so V = gcd( |B |,3abc), and set U =

√
|A |. Then OP(V )
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extends to a divisorial sheaf OM0 (1) on M0, and OM0 (1) generates the local class group of
the unsmoothed singularities. Now we wish to prove that OM0 (1) generates Cl(M0).
It is known that Pic(M0) = ℤ ([11, Lem. 2.1, Prop. 6.3]). Let OM0 (1) ∈ Cl(M0) be the

divisor on M0 from the previous paragraph (i.e. OP(V ) extends to OM0 (1) on M0). We will
show that OM0 (1) generates Cl(M0). Consider the following diagram:

0 ℤ ·OM0 (U2) ℤ ·OM0 (1) ℤ/U2ℤ 0

0 Pic(M0) Cl(M0) A 0.

It su�ces to show that the map ℤ ·O(U2) to Pic(M0) is surjective.
As K 2

Mt
is constant in the family M → T and the restriction of every divisor D |Mt is

numerically a rational multiple of KMt , the intersection numbers of divisors are constant

in the family (proving (5)). On the central fiber, if D0 ∈ |OP(V ) |, then D2
0 =

V2

U2V2 =
1
U2 .

Therefore, OM0 (1)2 = 1
U2 (proving (3)).

Now, let L be the ample generator of Pic(M0). Then L ≡num OM0 (`) so OM0 (`) · OM0 (1)
is an integer. Let D0 ∈ |OM0 (1) |. As U2D0 is Cartier, ` ≤ U2. Therefore, because OM0 (`) ·
OM0 (1) = ` 1

U2 , we must have ` = U2. This implies that L = O(U2D0) and O(U2D0) generates
Pic(M0). This completes the proof of (1).

To prove (4), assume that (after possibly base changing) that OM0 (`) extends to an ample
generator OMt (1) of Cl(Mt ) for a general fiber Mt of M . Then by (5) we have OM0 (`)2 =
OMt (1)2. By (3) the left hand side is `2/U2 (where U2 = |A | where A is the local class group
of the singularities of M0). And by (3) the right hand side is V 2/U2 which proves (4). �

Theorem 1.7. Let M0 be the central �ber of a ℚ-Gorenstein degeneration of P2.

(1) If M is a 1-parameter partial smoothing of M0 and D ⊂ M is a divisor �at over T , then the
dimension of the the cohomology hi (Mt ,OMt (Dt )) is constant in the family.

(2) If D0 ⊂ M0 is an ample Cartier divisor, then OM0 (D0) is globally generated.

Proof. For (1), as M is a family of surfaces, by semicontinuity it su�ces to show that

h1(M0,OM0 (D0)) = 0

for any divisor D0 on M0 a ℚ-Gorenstein degeneration of P2. For any such divisor, consider
a 1-parameter ℚ-Gorenstein degeneration M ′ of M0 to P(a2,b2,c2) for some Markov triple
(a,b ,c ) such that there is a divisor D ′ ⊂ M ′ flat over T with O(D ′t ) � O(D0) for t gen-
eral. Any divisor on P(a2,b2,c2) has vanishing intermediate cohomology so we are done by
semicontinuity.

It su�ces to prove (2) for the ample generator D0 ∈ Pic(M0). We claim that it su�ces to
show there is a divisor C0 ∈ |D0 | avoiding the singularities ofM0. First, as D0 is the generator
of Pic(M0) such a divisor is reduced and irreducible (any component of C0 would be Cartier
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as it avoids singularities). Assuming the existence of such a C0 we see that the base locus of
|D0 | is contained in C0. Consider the exact sequence on cohomology induced by the short
exact sequence:

0→OM0→OM0 (D0)→OC0 (D0)→0.

By the previous paragraph H 1(M0,OM0) = 0 so the base locus of OM0 (D0) and OC0 (D0) are
equal. To show OC0 (D0) is base point free it su�ces to show for any point p ∈ C0 with
maximal ideal mp ⊂ OC0 that H

1(C0,mp (D0)) = 0. By Serre Duality

H 1(C0,mp (D0)) � Hom(mp (D0),lC0)∨.

As D0 is Cartier and C0 ⊂ M0 avoids the singularities of M0:

Hom(mp (D0),lC0) = Hom(mp ,lM0 |C0).

Finally, the degree of lM0 |C0 < −1. As C0 is reduced and irreducible Hom(mp ,lM0 |C0) = 0.

So, it su�ces to show there exists a divisor C0 ∈ |D0 | which avoids the singularities of M0.
Let M ′ → T ′ be a 1-parameter ℚ-Gorenstein degeneration of M0 to a weighted projective
space P(a2,b2,c2) (for some Markov triple (a,b ,c )), so the general fiberM ′t ofM ′ isM ′t � M0,
and the central fiber is M ′0 � P(a2,b2,c2). Further assume a ≤ b ≤ c and the Markov triple
has c as small as possible. Let A be the local class group of the smoothed singularities of
P(a2,b2,c2) and B is the local class group of the unsmoothed singularities. Set U =

√
|A | and

V =
√
|B |. Then (after possible base change) O(UV 2) extends to a divisorial sheaf D ′ ⊂ M ′

such that OM ′t (D
′
t ) � OM0 (D0) for t general. As the dimension of global sections of OM ′t (D

′
t )

are constant in this family, the base locus Z ⊂ M ′ of |D ′t | is closed. So it su�ces to show
there is a divisor C ′0 ∈ P(a

2,b2,c2) that avoids the unsmoothed singularities.

As V 2 = |B | divides UV 2, it is easy to see that there are divisors in |O(UV 2) | that avoid
the unsmoothed singularities. Specifically, if V = c , U = ab , and P(a2,b2,c2) has coordinates
x ,y ,z then (zab = 0) avoids the unsmoothed singularities. Or if V = bc and U = a then the
divisor (zab2 + yac2 = 0) avoids the unsmoothed singularities. �

Now we have developed the machinery needed to prove Theorem A.

De�nition 1.8. We say a prime number p is a Markov prime if it appears in a Markov triple.

Theorem 1.9. Let (a,b ,c ) ≠ (1,1,1) be a Markov triple in non-decreasing order. If d > 2 is a
multiple of c then there is a smooth limit of degree d plane curves that is not planar. In particular, if
p > 2 is a Markov number that is prime, there is a nonplanar degeneration of degree p plane curves.

Remark 1.10. This proves Theorem A.

Proof. First, we construct a smooth Cartier divisor on M (c ) of the appropriate degree, and
show that it extends to a smooth divisor in the degeneration of P2 to M (c ). In the special
case c = 2 (so d is even, and at least 4) we can degenerate a family of even degree curves
to a smooth double of a degree d/2 curve. Projecting from a point on the curve shows the
gonality of such a curve is at most d − 2. But the gonality of a degree d plane curve is d − 1,

9



so we see that this double cover is not planar. So we proceed by assuming c > 2, and we
similarly show the gonality is too small.

By Theorem 1.6(3), in the specialization of P2 to M (c ) the line bundle OP2 (nc ) specializes
to the line bundle OM (c ) (nc2). By Theorem 1.7(2), OM (c ) (nc2) is globally generated, so there
is a smooth divisor C ∈ |OM (c ) (nc2) |. By Theorem 1.7(1), this is a specialization of a family
of curves of degree nc .

Now we want to show that C is not a plane curve. If it were planar, it would have to have
degree nc and gonality nc − 1. The idea is to show that C admits a low degree pencil and
therefore smaller gonality. Consider the divisorial sheaf OM (c ) (ab) on M (c ). Specializing
M (c ) to M (a,b ,c ) gives a specialization of OM (c ) (ab) to the divisorial sheaf OM (a,b ,c ) (a2b2)
on M (a,b ,c ) = P(a2,b2,c2). This has two natural sections xb

2
and ya

2
, so by Theorem 1.7(1)

we see that h0(OM (c ) (ab)) ≥ 2. This is the desired pencil on M (c ). Restricting to C shows
that the gonality of C is at most nab . Now we claim that ab < c − 1 and thus the gonality of
C is too small.

We prove the claim that ab < c−1 by induction. The first Markov triple with c > 2 is (1,2,5)
which clearly satisfies ab < c−1. For any Markov triple, there is a finite sequence of mutations
connecting (1,2,5) to (a,b ,c ) such that the sum of the elements in the Markov triple increases
at each step [16, Prop. 3.7(a)]. So, assume that (a,b ,c ) is a triple with a ≤ b ≤ c and the
inductive hypothesis holds for every triple in the mutation sequence from (1,2,5) to (a,b ,c ),
with c > 2. Consider the previous triple (a,c ′,b) (or (c ′,a,b)) where c ′ = 3ab − c . Note that
we must have c ′ ≤ b by hypothesis that the sum increases at each stage as shown in [16, Prop.
3.7(b)]. Then, the inductive hypothesis says ac ′ < b − 1, so a (3ab − c ) < b − 1. Rearranging,
we see that 3a2b − b < ac − 1, and because 2a2b − b > 0, this implies that a2b ≤ ac − 1, so
ab < c − 1

a < c − 1. Therefore, ab < c − 1. �

Example 1.11. The first non-trivial example is the case p = 5. In this case, Gri�n proved
([10, Thm. 1.A]) that any smooth hyperelliptic genus 6 curve embeds in P(1,2,13) as

z 2 = g26(x ,y)

in the weighted coordinates [x : y : z ] on P(1,2,13), where g26(x ,y) is a degree 26 polynomial
such that g26(0,y) ≠ 0 and the polynomial h13(u ,y) has 13 distinct roots, where h13 is obtained
from g26 by u = x2. The polynomial g26 is determined by choice of Weierstrass point on the
curve.

These curves further admit an embedding as Cartier divisors on M (5). The surface M (5)
can be explicitly realized as a hypersurface of degree 26 in P(1,2,13,25) (c.f. Example 1.3):
in terms of weighted coordinates [x : y : z : w], M (5) can be given by

(xw = z 2 − g26(x ,y)) ⊂ P(1,2,13,25)

where g26 is any degree 26 polynomial such that g26(0,y) ≠ 0. To compare with the notation
of Example 1.3, make the change of coordinates w ↦→ w − 1

x (g26(x ,y) − g26(0,y)) and scaling
of y so this can be expressed as xw = z 2 + y13.
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Therefore, if M (5) = (xw = z 2 − g26(x ,y)) in P(1,2,13,25), any hyperelliptic curve can be
written as the Cartier divisor (w = 0) on M (5). By Theorem 1.6 this Cartier divisor extends
to a Cartier divisor on a smoothing of M (5) to P2, so every hyperelliptic curve of genus 6
can be realized as a limit of quintic plane curves in this way.

Remark 1.12. In [30], Zagier proved that the Markov counting function grows asymptotically
like log(n)2. As the prime counting function grows like n/log(n) the density of primes that
are Markov numbers is 0. Therefore, Conjecture C implies that for almost all prime numbers
p, every smooth limit of a degree p plane curve is a plane curve.

2. Hacking’s Calabi-Yau limits

Given a family of plane curves Ct ⊂ P2 over a punctured base A1 \ {0}, one may ask how to
complete the family, or if there is a unique way to do so. A useful framework for this problem
is to study not only degenerations of the curve Ct , but rather the pair (P2,Ct ). For curves
of degree d ≥ 4, to study the limits of these pairs, we introduce the moduli space of stable
pairs. Although we will rely mostly on Hacking’s work in [11], we include several relevant
definitions and results here, and direct the interested reader to [19].

De�nition 2.1 (KSBA stability; see Definition 8.6, 8.7 in [19]). The moduli space of stable
pairs parametrizes semi-log canonical pairs (X ,D), with X projective, of fixed volume and
dimension, such that KX +D is ample.

Defining a family of such pairs requires great care and subtlety, see [19, Ch. 7, 8].

Theorem 2.2 (Theorem 8.9(2) in [19]). Up to base change, any family of stable pairs

(X ,cD) → T ×

over a punctured one-dimensional base T × can be completed uniquely to a stable family (X ,cD) → T ,
such that KX /T + cD is relatively ample and each �ber (X t ,cD t ) has slc singularities.

In particular, given any family of degree d ≥ 4 plane curves C over a punctured one-
dimensional base T ×, for c > 3

d , by regarding the family as a family of pairs (P2 ×T ×,cC ),
we obtain a unique stable limit (X0,cD0) of the family. The surface X0 is a slc degeneration
of P2 and D0 is a limit of the family of plane curves.

Example 2.3. Although the previous theorem guarantees a unique limit for every c , these
vary with c in a precise way, and as c varies, there is a wall-crossing phenomenon [1]. For
example, take a family of smooth quartic curves Ct ⊂ P2 degenerating to a curve C0 ⊂ P2

with a single cusp, a singularity of the form x2 + y3 = 0. This pair (P2,C0) is the stable
limit of the family of smooth curves for 3

4 < c < 5
6 . However, for c > 5

6 , the stable limit is
a pair (X ,C ′0), where X is a non-normal surface X1 ∪ X2, where each X1 has cyclic quotient
singularities along the double locus, and C ′0 is a reducible curve C

′
0 = C1∪E (one component

in each component of X ), where E is an elliptic tail meeting C1 at a single point on the
double locus of X . This example (and related wall crossings) were studied in [13].
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De�nition 2.4. Let D be a smooth family of curves over a base T with special fiber 0 ∈ T
such that Dt is a plane curve of degree d > 3 for t ≠ 0. Let T × = T \ {0} and D× = D ×T T ×.
Consider the family (P2×T ×,D×). By Theorem 2.2, there is a unique limit of the family such
that the central fiber (X0,D ′0) is slc and KX0 + D ′0 is ample. By adjunction, this implies that
D ′0 is nodal and KD ′0 is ample, hence by applying Theorem 2.2 to the family of curves D×,
D ′0 is the unique stable limit of this family. Therefore, D ′0 = D0, and we will call (X0,D0) the
coe�cient 1 limit of (P2 ×T ×,D×) and we will call the family (X ,D) the coe�cient 1 family.

In general, determining the possible degenerations of P2 that appear in these limits is quite
di�cult. As a first indication, it is not even clear how many components these degenerations
should have. However, in [11], the author studies stable pairs (X ,cD) where c = 3

d + n is as
small as possible. In fact, Hacking is able to obtain a moduli space of semistable pairs [11,
Defn. 2.4] (X , 3dD) satisfying:

• The surface X is normal and log terminal,
• The pair (X , 3dD) is log canonical, and dKX + 3D ∼ 0,
• X admits a ℚ-Gorenstein smoothing to P2.

Furthermore, Hacking proves that any family of pairs (P2,Ct ) can be completed to a family
of semistable pairs. This completion is not necessarily unique, but its existence is su�cient
for this paper.

De�nition 2.5. Given a family (P2×T ×,D×) of smooth degree d plane curves overT ×, we will
call any such family of semistable pairs Hacking’s Calabi-Yau family, denoted by (X CY,DCY).

A main benefit to considering these semistable pairs is that there exists an explicit (infinite)
list of log terminal ℚ-Gorenstein degenerations of P2, enumerated by the Markov numbers.
However, the curves appearing on these surfaces may be quite singular. In particular, the
log canonical threshold can be as small as 3

d . The trade-o� between simplifying the surface
and complicating the curve will be explored in the following sections.

Remark 2.6. An alternative perspective to constructing Hacking’s Calabi-Yau limits comes
from K-moduli. For n ∈ (0, 3d ), there is a K-moduli space parameterizing pairs (X , ( 3d − n )D)
arising as degenerations of plane curves of degree d (c.f. [2]). These depend on n , but for for
0 < n � 1, the K-moduli spaces are isomorphic ([2, Thm 1.2]), i.e. for any pair (X , ( 3d − n )D)
appearing in the K-moduli space is K-semistable for all 0 < n � 1. Because any K-semistable
pair is klt, this implies that the pair (X , 3dD) is a semistable limit. So at least one of Hacking’s
Calabi-Yau limits of a family of plane curves is reproduced from K-moduli.

For any fixed degree d , it is straightforward to write down the possible surfaces X CY
0 that

may appear using the classification from Theorem 1.4, the index bound from [11, Thm. 4.5],
and a log canonical threshold computation. In particular, the following propositions give all
possible surfaces X CY

0 containing limits of degree 5 or degree 7 curves.
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Proposition 2.7. Let D be a projective family of curves over a smooth curve pointed curve 0 ∈ T
such that the general �ber is a smooth plane curve of degree 5. If (X CY

0 ,DCY
0 ) is Hacking’s Calabi-Yau

limit over 0 then X CY
0 is either P2, P(1,1,4), M (5), or P(1,4,25).

Proof. By [11, Thm. 4.5], the index of the canonical divisor of X CY
0 is at most 5 at each point,

and the index of KM of any surface M = M (a,b ,c ), M (a,b), or M (a) is given by a,b , or c , so
we may assume that a,b ,c ≤ 5. The only surfaces with this property are P2,M (2) = P(1,1,4),
M (5), or M (2,5) = P(1,4,25). �

Proposition 2.8. Let D be a projective family of curves over a smooth curve pointed curve 0 ∈ T
such that the general �ber is a smooth plane curve of degree 7. If (X CY

0 ,DCY
0 ) is Hacking’s Calabi-Yau

limit over 0 then X CY
0 is either P2 or P(1,1,4).

Proof. X CY
0 is a surface M that is M (a,b ,c ), M (a,b), or M (a) for some unordered Markov

triple (a,b ,c ). By [11, Thm. 4.5], the index of the canonical divisor of M is at most 7 at
each point, and the index of KM at each singular point is given by a, b , or c , so we can
assume a,b ,c ≤ 7. So the only Markov triples to consider are (1,1,1), (1,1,2), and (1,2,5).
So we only need to consider the triple (1,2,5) and rule out the surfaces M (2,5) and M (5).
However, limits of degree 7 curves on M (5) or M (2,5) have log canonical threshold at most
1
4 (see e.g. [2, Prop. 9.13]), which is less than 3

7 , so cannot appear as Hacking’s Calabi-Yau
limits. �

3. General results on normal families of curves and normalizing S2 varieties

In §2 we started with a smooth projective family of curves

D→T
over a 1-dimensional base T . Assuming that a general member is a plane curve, we showed
there is a natural, one-parameter family DCY such that every fiber is planar or lives in a
degeneration of P2. One di�culty that arises is that the surface DCY need not be normal. On
the other hand, D is a smooth family (and therefore normal). The purpose of this section
is to understand the basic relationship between DCY, its normalization Dnorm, and D . These
results are used extensively in the next section to study the combinatorics of the central fiber
of Hacking’s Calabi-Yau family, especially when DCY is not a normal surface.

3.1. Contracting to a normal surface. Consider a commutative diagram of varieties:

S ′ S

T

`

such that ` is a birational map of normal surfaces, T is a curve, the maps to T are projective
and flat with general fiber a smooth and irreducible curve of genus g . Assume there is a
marked point 0 ∈ T and that the fiber S ′0 is a reduced and normal crossing curve.
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De�nition 3.1. Recall that for C a reduced curve with normalization f : C̃→C and p ∈ C
is a point, the X-invariant of C at p is the number:

Xp = lengthp
(
f∗(OC̃ )/OC

)
.

The sum of the X-invariants controls the di�erence between the arithmetic and geometric
genuses of C :

j (OC̃ ) − j (OC ) =
∑
p∈C

Xp .

Let E = `−1(p) ⊂ S ′0 be an exceptional divisor (which is necessarily reduced, but possibly
reducible). The X-invariant of the point p ∈ S0 can be computed as follows.

Lemma 3.2. With the assumptions above:

(1) The X-invariant at p ∈ S0 can be computed by the following formula:

Xp = (# of branches at p ∈ S0) − j (OE).

(2) If there is a component C ∈ S ′0 such that pg (C ) = pa (S
′
0) = g then either C maps isomorphi-

cally onto its image in S0 or C is contracted to a point q ∈ S0 and for all p ∈ S0 :

Xp (S0) =
{
(# of branches at p ∈ S0) − 1 if p ≠ q
(# of branches at p ∈ S0) − 1 + g if p = q .

Proof. For (1), by contracting all exceptional divisors of ` that don’t map to p we can assume
that ` : S ′→S is an isomorphism away from p . So ` is an isomorphism away from p . Let
C ′ = `−1(S0) be the strict transform of S0 in S ′. Thus S ′0 = C

′ ∪ E, and locally at p, C ′

normalizes S0.

Consider the exact sequence of sheaves on S ′:

0→I→OS ′0
→OC ′→0.

As S ′→T is flat, j (OS ′0
) = 1 − g = j (OS0). Thus Xp = −j (I ).

The ideal I is supported on the exceptional divisor E and S ′0 is nodal in a neighborhood
of E; thus I � OE (−E ∩C ′) (where the intersection E ∩C ′ is considered as a reduced divisor
on E). As C ′ is nodal near E, OE (−E ∩C ′) is a line bundle with degree:

deg(OE (−E ∩C ′)) = −(# of branches at p ∈ S0).

So by Riemann-Roch:

Xp = −j (I ) = −j (OE (−E ∩C ′)) = (# of branches at p ∈ S0) − j (OE).

For (2), note that the dual graph of S ′0 is necessarily a tree, and the dual graph of any
connected curve E ⊂ S ′0 is either (a) a tree of rational curves, in which case j (OE) = 1, or
(b) a tree that contains C , in which case j (OE) = 1− g . The result then follows from (1). �
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3.2. Normalizing S2 varieties. The goal of this section is to prove a general result about
S2 varieties, which we believe is well known to experts. We show that all complex S2 varieties
can be constructed by codimension one gluing conditions on their normalizations.

Remark 3.3. The main application of this section will be to studying birational models of
DCY. As X CY is log terminal and ℚ-factorial ([11, Lem. 2.11]), Corollary 5.25 in [20] implies
ODCY is CM and hence DCY is S2.

De�nition 3.4. LetY ⊂ Z be a subscheme of a normal pure-dimensional scheme Z . Define
the codimension one part of Y , denotedYdiv ⊂ Y to be the maximal subscheme ofY which has
pure codimension 1 in Z .

Let X be a complex S2 variety and let

a : X a→X
be the normalization map. Let F ⊂ X be a divisor.

Assume that – at least set-theoretically – F contains the non-normal locus of X .

Suppose
F = F1 ∪ · · · ∪ Fℓ

is a union of (possibly reducible) divisors. Set

Di := a−1(Fi )div.
For any k > 0 as X is normal, there is a well-defined subscheme kDi ⊂ X (resp. kD) and it
has a reflexive ideal sheaf OX a (−kDi ). We define kFi (resp. kF ) to be the scheme theoretic
image of kDi (resp. kD).

Theorem 3.5. In the set-up above, assume that

D = D1 t · · · tDℓ
is the disjoint union of the Di . For every k > 0 the pushout

kD (kF1 t · · · t kFℓ )

X a X a tkD (kF1 t · · · t kFℓ ) =: Xk
exists, there are maps ak : Xk→X , and for k su�ciently large ak is an isomorphism.

Remark 3.6. In other words, the S2 variety X can be constructed via divisorial gluing con-
ditions. Set-theoretically, this says that if divisors intersect in X then the codimension 1 parts
of their preimages intersect in X a.

More precisely:

Corollary 3.7. Suppose that F = F1 ∪ F2 and there is a point x ∈ X in the intersection F1 ∩ F2.
Then the divisors D1 and D2 intersect over x, i.e. x ∈ a(D1 ∩D2).
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Similarly there is a result for the analytic branches of F at a point:

Corollary 3.8. Suppose that x ∈ F ⊂ X and I = {F1, · · · ,Fℓ } is the set of analytic branches of F
at x. There is no partition:

I = I1 t I2
(with I1 and I2 nonempty) such that the codimension one preimages of the branches in I1 do not meet
the codimension 1 preimages of the branches in I2.

The proof of Theorem 3.5 uses the following lemma.

Lemma 3.9. Let X and Y be complex varieties and assume X is S2. If

f : Y→X
is a �nite, proper, birational map that is an isomorphism away from codimension 2, then f is an
isomorphism.

Proof of Lemma. It su�ces to check f is an isomorphism locally. Assume that X = Spec(A)
andY = Spec(B). Consider the sequence of A-modules:

0→A→B→Q→0.

Then f is an isomorphism if and only if Q = 0. We prove that Q has no associated points,
so Q = 0. Note, that any associated point of Q has codimension at least 2 by assumption.
Let p be any prime ideal in A of codimension at least 2. We have

HomA (A/p,B)→HomA (A/p,Q)→Ext1A (A/p,A).
The first module vanishes because B is torsion free as an A-module. The last module vanishes
because A is S2. So HomA (A/p,Q) = 0 for all p prime of codimension at least 2. Thus Q = 0,
so f is an isomorphism. �

Proof of Theorem 3.5. The existence of the pushout is guaranteed by Ferrand’s work [8, Thm.
7.1] (alternatively, see [29, Tag 0ECH]). Given the existence of ak it su�ces to check it is an
isomorphism over an a�ne open set for k su�ciently large. Set:

• X = Spec(A), Xk = Spec(Ak ), X a = Spec(B),
• (kD1 t · · · t kDℓ ) = Spec((Rk )1 × · · · × (Rk )ℓ ) = Spec(Rk ),
• (kF1 t · · · t kFℓ ) = Spec((Sk )1 × · · · × (Sk )ℓ ) = Spec(Sk ).

The construction of the pushouts says Ak is a fiber product of rings:

Ak = B ×Rk Sk .
Each map (Sk )i→(Rk )i is injective and each map B→(Rk )i is a surjection. The goal is to
show that a∗k gives an isomorphism between A and Ak for k su�ciently large.

Recall the conductor ideal cond(B/A) ⊂ A is the annihilator of the A-module B/A. Simi-
larly there are conductors cond(B/Ak ) and cond(Ak/A). The conductor:

cond(B/A) ⊂ A ⊂ B
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is both an ideal for A and B . The following hold:

• cond(B/A) ⊂ cond(B/Ak ),
• any B -ideal I ⊂ cond(B/A) ⊂ A is also an A-ideal,
• the cosupport of the ideal cond(B/A) in B is set-theoretically the preimage of the
non-normal locus of X , and
• for k > 0 su�ciently large O(−kD) ⊂ cond(B/A).

Assume that k is large enough so there is containment. Then we have

O(−kD) = IkF1t···tkFℓ = IkF ⊂ A ⊂ Ak ⊂ B .

This gives rise to two commutative diagrams of A-modules.

0 0

0 A Ak Qk 0

0 A B Q 0

Q′ Q′

0 0

0 0

0 A/IkF Sk Qk 0

0 A/IkF Rk Q 0

Q′ Q′

0 0
Diagram A. Diagram B.

Diagram B is obtained by tensoring Diagram A with A/IkF . Exactness in Diagram B relies
on the containment IkF ⊂ cond(B/A) ⊂ cond(B/Ak ). Therefore, there is k > 0 such that

Supp(Ak/A) = Supp(Sk/(A/IkF )).

Finally,

Spec(A/IkF ) = kF and Spec(Sk ) = kF1 t · · · t kFℓ
are isomorphic away from the intersections of the Fi , which have codimension ≥ 2 in X . It
follows that

ak : Xk→X

is a finite, proper, birational map that is isomorphism away from codimension 2 so we are
done by Lemma 3.9. �

Proof of Corollary 3.7. Assume that the divisors D1 and D2 do not intersect over x . Then as
the pushouts are also pushouts at the level of sets of ℂ-points, the fiber of ak over x has at
least 2 points for all k > 0 a contradiction. �
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Proof of Corollary 3.8. There is an étale neighborhood k : U→X of x ∈ X and a point y ∈ U
such that the analytic branches of F correspond to irreducible components of k−1F going
through y . Then apply Corollary 3.7. �

4. Intersection graphs

The purpose of this section is to define for any 1-dimensional scheme C a bipartite graph
Γ(C ). This is a generalization of the dual graph of a semistable curve that behaves reasonably
well for S2 families of curves.

De�nition 4.1. Let C be a purely one-dimensional scheme. The intersection graph, Γ = Γ(C )
of C is a bipartite graph (with green and yellow vertices):

• the set of green vertices G = G (C ) correspond to one dimensional components of C ,
• the set of yellow verticesY =Y (C ) correspond to points on C where C has multiple
analytic branches, and
• the set of edges E = E (C ) connecting a yellow vertex y to a green vertex g are in
correspondence with the analytic branches of g that go through y .

Remark 4.2. (1) The graph Γ is bipartite as edges necessarily connect yellow vertices to
green vertices.

(2) If C is a curve with only nodal singularities, then Γ(C ) is the barycentric subdivision
of the dual graph of C .

(3) Every yellow vertex has at least 2 adjacent edges.

C1 Γ(C1) C2 Γ(C2)

Figure. Examples of curves and their intersection graphs.

De�nition 4.3. There are two natural maps E→G and E→Y . For g ∈ G (resp. y ∈ Y ) we
use Eg (resp. Ey ∈Y ) to denote the edges adjacent to g ∈ G (resp. the edges adjacent to y ∈Y ):
these are the fibers of these maps. Likewise, for any g ∈ G , we define the set of adjacent
vertices to be:

Yg = {y ∈Y |g and y are adjacent ⊂ Γ} ⊂ Y.
Similarly for any y ∈Y we define Gy ⊂ G .

De�nition 4.4. Given a �nite map of curves f : C1→C2, the induced map of graphs1

Γf : Γ(C1)→Γ(C2),
is defined as follows:

(1) For g ∈ G (C1), the corresponding component maps to a unique component inG (C2),
1This is an abuse of terminology and is really a map of the underlying topological spaces.
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(2) For y ∈Y (C1) there are two cases:
(a) If all of the branches of C1 at y map to the same branch in C2 then that branch

determines a unique irreducible component g ′ ∈ G (C2). Set Γf (y) = g ′.
(b) If the branches ofC1 at y map to more than one branch ofC2, then y ′ = f (y) ∈ C2

is a point with multiple analytic branches. Set y ′ = Γf (y).
(3) For e ∈ E (C1) that connects the vertex g ∈ G (C1) to y ∈Y (C1):

(a) If Γf (y) = Γf (g ) = g ′ then Γf (e ) := g ′.
(b) Otherwise e determines a unique branch of f (g ) at f (y) = y ′ and Γf (e ) is defined

to be that branch.

De�nition 4.5. Let f : C1→C2 be a finite map of curves.

(1) For any yellow vertex y ∈ Γ(C1) such that Γf (y) is yellow, we define the branch injec-
tivity failure of Γf at y be

Z f (y) := #(Ey ) − #(Γf (Ey )).

(If y maps to a green vertex, set Z f (y) = 0.)
(2) For g ∈ G (Cg ) with associated component C ′ ⊂ C1 we define the component injectivity

failure of Γf at g to be the number

Z f (g ) := deg
(
f |(Cg )red

)
− 1.

Thus Z f (g ) = 0 ⇐⇒ f maps (Cg )red birationally onto its image.
(3) We say Γf is locally injective at y if Z f (y) = 0 and Z f (g ) = 0 for all g ∈ Ey .
(4) For any curve C , we define the multiplicity m (g ) of g ∈ G (C ) to be the length of the

local ring of C at the generic point of the associated curve Cg .

Lemma 4.6. Let C1 be a reduced curve and let f : C1→C2 be a �nite proper map of curves. If there is
a yellow vertex y ∈Y (C1) such that Γf is locally injective at y then there are analytic neighborhoods
y ∈ Δ1 ⊂ C1 and f (y) ∈ Δ2 ⊂ f (C1)red such that the map

Δ1→Δ2

is a partial normalization. As a consequence we have an inequality of X-invariants:

Xy (C1) ≤ X f (y) (Δ2).

Proof. Any proper birational map is a partial normalization. As the branches at y map injec-
tively to the branches at f (y) and each curve adjacent to y maps birationally onto its image
we can take a small enough neighborhood where the map is birational and proper. �

De�nition 4.7. Let Γ(C ) be the intersection graph of a curve. Let y ∈ Γ(C ) be a yellow
vertex. We define the local Euler characteristic at y to be:

j loc(y) = 1 − #(Ey ).
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Note that, for any yellow vertex y ∈ Γ(C ) we have j loc(y) ≤ −1. The following is a
straightforward application of bipartiteness:

(1) j (Γ(C )) = #(G (C )) +
∑

y∈Γ(C )
j loc(y)

Now we consider the case of interest to us. Let

X→T 3 0

be a flat map from an irreducible S2 surface X to a smooth pointed curve 0 ∈ T such that
the non-normal locus of X is contained in the central fiber X0. Let

a : X a→X

denote the normalization map.

Theorem 4.8. Let XT be an S2 surface as above. Assume that the curve X a
0 is reduced.

(1) The induced map Γa : Γ(X a
0 )→Γ(X0) is surjective.

(2) There is an inequality:

j (Γ(X a
0 )) ≤ j (Γ(X0)) +

∑
g ∈G (X0)

(
m (g ) − 1

)
−

∑
g ∈G (X a

0 )
Za (g ) −

∑
y∈Y (X a

0 )
Za (y).

(3) De�ning

M :=
∑

g ∈G (X0)
(m (g ) − 1).

If j (Γa0 ) = j (Γ(X0)) +M then Za (y) = Za (g ) = 0 for all y ∈Y (X a
0 ) and g ∈ G (X

a
0 ).

Roughly speaking this says that the di�erence in the Euler characteristics of the intersection
graphs of X a

0 and X0 are controlled by the multiplicities of X0.

Proof. To prove part (1), note that it is clear for green vertices in Γ(X0). For any yellow vertex
y ∈ Γ(X0) and any edge e ∈ Ey , partition the branches at y as follows:

Ey = {e } t (Ey \ {e }).

Then the one dimensional pre-images of the branches {e } and Ey \ {e } must intersect by
Corollary 3.8. This shows e ∈ Γf (E (X a

0 )) and it follows that y ∈ Γf (Y (X a
0 )).

For (2), we would like to use Equation 1. As the pushforward of the cycle [X a
0 ] is [X0] we

have: ∑
g ∈G (X0)

m (g ) =
∑

g ∈G (X a
0 )
(Za (g ) + 1).

Which gives

#G (X0) +
∑

g ∈G (X0)
(m (g ) − 1) = ©­«

∑
g ∈G (X a

0 )
Za (g )

ª®¬ + #G (X a
0 ).
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This shows:

#G (X a
0 ) = #G (X0) +

∑
g ∈G (X0)

(m (g ) − 1) −
∑

g ∈G (X a
0 )
Za (g ).

To complete the proof of (2) we need to prove the inequality:∑
y∈Y (X a

0 )

(
j loc(y) + Za (y)

)
≤

∑
y∈Y (X0)

j loc(y).

For any yellow vertex y ∈ Γ(X a
0 ), we have j loc(y) ≤ −1. Thus if Ỹ (X a

0 ) ⊂ Y (X
a
0 ) represents

the yellow vertices that map to yellow vertices:∑
y∈Y (X a

0 )

(
j loc(y) + Za (y)

)
≤

∑
y∈Ỹ (X a

0 )

(
j loc(y) + Za (y)

)
.

So for each y ′ ∈Y (X0) it su�ces to check that the inequality∑
y∈Γ−1a (y)

(
j loc(y) + Za (y)

)
≤ j loc(y ′).

First we show that we can order the vertices

Γ−1a (y ′) = {y1 < y2 < · · · < yℓ }

such that for each yi (with i > 1) the intersection

∅ ≠ Γa (Eyi )
⋂©­«

⋃
y j<yi

Γa (Ey j )
ª®¬ ⊂ Ey ′,

i.e. there is an overlap in the images of the edges adjacent to yi and the previous y j s.

We proceed by induction. Suppose, we know it up to step (i − 1). Define:

Yi−1 := {y1, . . . ,yi−1} and Ei−1 :=
⋃
y∈Yi−1

Eyi .

Suppose for contradiction that for all y j ∈ Γ−1a (y ′) \Yi−1 the intersection:

Γa (Ei−1) ∩ Γa (Ey j ) = ∅.

Then we can partition the branches g ∈ Ey ′ into two sets:

Ey ′ = Γa (Ei ) t
(
Ey ′ \ Γa (Ei )

)
Therefore the one-dimensional preimages of the branches in Γa (Ei ) and Ey ′ \ Γa (Ei ) do not
intersect, which contradicts Corollary 3.7.
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Thus we can order the yellow vertices as desired. Now we can count:

j loc(y1) ≤ 1 − #(Γa (E1)) − Z (y1),
j loc(y1) + j loc(y2) ≤ 1 − #(Γa (E2)) − Z (y1) − Z (y2),

. . .

j loc(y1) + · · · + j loc(yℓ ) ≤ j loc(y ′) − Z (y1) − · · · − Z (yℓ ).

These inequalities can be proved in order, using the property of the ordering. This completes
the proof of (2). And the proof of (3) follows easily. �

Now we would like to classify the possible intersection graphs that appear in Hacking’s
Calabi-Yau limits of degree 7 curves and degree 5 curves. Let DCY be an S2 surface with a
projective map to a curve T such that the nonnormal locus is contained in DCY

0 . Let Dnorm

be the normalization of DCY and assume that Dnorm
0 is reduced.

If it D was a limit of degree 7 curves then the hypotheses (H1)-(H6) below are satisfied,
and if D was a limit of degree 5 curves then the hypotheses (H1★)-(H6★) below are satisfied
(see Lemma 4.10).

(H1)=(H1★) The intersection graph, Γ(Dnorm
0 ) is a tree.

(H2)=(H2★) If DCY
0 is nonreduced then there is some vertex v ∈ G (Dnorm

0 ) or v ∈Y (Dnorm
0 )

such that Za (v ) > 0.
(H3) The multiplicity of any curve in DCY

0 is at most 2.
(H3★) The curve DCY

0 is reduced.
(H4) At any point in DCY

0 , the multiplicity is at most 4.
(H4★) At any point in DCY

0 , the multiplicity is at most 3.
(H5)=(H5★) Any two green vertices g1, g2 ∈ Γ(DCY

0 ) have graph distance 2.
(H6)=(H6★) At least one component of DCY

0 is reduced.

Theorem 4.9. With the hypotheses (H1)-(H6) above, DCY
0 has between 1 and 4 components and has

one of the following intersection graphs Γ (the green vertices marked with 2s are doubled curves):

One component Two components Three components Four components

(★)
(★)

2

(★)

2
2

2

With the hypotheses (H1★)-(H6★), DCY
0 has between 1 and 3 components and its intersection graph is

one of the graphs marked with a star.

Proof. Throughout let |G | denote the number of green vertices. We will use the following fact:

Fact: If Γ is a connected graph and Γ′ ⊂ Γ is any subgraph, then j (Γ) ≤ j (Γ′).
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To start assume DCY
0 is reduced; so DCY = Dnorm. By (H1), Γ is a tree. Assume that there

are at least 2 green vertices. Consider the graph Γ′ obtained by deleting one of the green
vertices g ∈ Γ (and all the adjacent edges Eg ). By (H5) this graph is still connected, so has
j (Γ′) = 1. Thus 1 = j (Γ) = j (Γ′) + 1 − (#(Eg )). Thus there must be one edge adjacent
to any g ∈ Γ, and therefore Γ is a star graph with a single yellow vertex (these are the top
graphs in the table). Notice, that by (H4) there can be at most 4 green vertices in Γ.

Now assume that DCY
0 is nonreduced. We organize our proof by the number of doubled

curves M ≥ 1 in DCY
0 . By Theorem 4.8 and assumptions (H1) and (H2), we have:

(2) j (Γ) +M ≥ 2.

To start, consider the case M = 1. Thus:

j (Γ) ≥ 1

so Γ(DCY
0 ) is a tree. The argument from the reduced case implies it is a star with center a

yellow vertex. By (H4) there are at most three components (using that now there is a doubled
curve). This gives two possible graphs in the table.

Now assume M = 2. By (H6) we have |G | ≥ 3. If |G | = 3 then by (H4) and (H5), Γ
contains the following subgraph.

2

2

This has Euler characteristic 0, so there cannot be any additional yellow vertices or edges.
If |G | ≥ 4 then Γ contains one of the following subgraphs:

2

2

2

2

2

2

These all have Euler characteristic at most −1 which is a contradiction.

If M ≥ 3 then by (H6) |G | ≥ M + 1. By (H4) any yellow vertex that meets two dou-
bled vertices cannot meet any other vertex. By (H5) there are at least

(M
2

)
yellow vertices

connecting pairs of doubled components and at least M yellow vertices connecting the dou-
bled components to some reduced component. For example when M = 3, Γ contains the
subgraph:

2

2

2
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Such a graph (assuming M ≥ 3) has

j (Γ) ≤ M + 1 −
(
M
2

)
−M = 1 −

(
M
2

)
≤ 1 −M .

This is too negative.

Replacing (H3) by (H3★) and (H4) by (H4★) selects the starred graphs in the table. �

Lemma 4.10. Let D is a family of smooth projective curves over a smooth curve T . If the general �ber
is a degree 7 plane curve then after possibly making a change of base Dnorm

0 is reduced and hypotheses
(H1)-(H6) are satis�ed by DCY and its normalization Dnorm. Similarly, if D is a family of degree 5
curves then after possibly making a change of base, Dnorm

0 is reduced and hypotheses (H1★)-(H6★) are
satis�ed.

Proof. After possible making a change of base, we can assume that there is a resolution
of singularities D ss of DCY with reduced, nodal central fiber. The family D is the relative
minimal model of the family, so there is a map D ss→D that contracts trees of rational curves.
It follows that the intersection graph of D ss

0 is a tree and the same is true for Dnorm
0 as Dnorm

is a contraction of D ss. Thus (H1) is satisfied.

Now suppose DCY
0 is nonreduced. If (H2) does not hold, then either D0 is birational to a

component ofDCY
0 orD0 is contracted inDnorm (in which case, by Lemma 3.2 and Lemma 4.6

there is a point p ∈ (DCY
0 )

red such that Xp ((DCY
0 )

red) ≥ (# of branches) + g − 1). Either of
these cannot happen as the arithmetic genus of (DCY

0 )
red is strictly smaller than the arithmetic

genus of DCY
0 .

(H3) and (H4) are both consequences the log canonical threshhold bound:

lct(X0,DCY
0 ) ≥ 3/7.

(The log canonical threshhold of a multiplicity a point is bounded from above by 2/a. The
log canonical threshhold of a multiplicity b curve is bounded above by 1/b .) (H5) uses that
P2 and P(1,1,4) both have Picard rank 1.

For (H6), it is clear in the case DCY
0 ⊂ P2 (as 7 is not a multiple of 2). In the case

DCY
0 ⊂ P(1,1,4), we apply Lemma 4.11.

For degree 5 curves, the hypotheses can be checked similarly. �

Lemma 4.11. Let C =
∑
miCi ⊂ P(1,1,4) be a divisor where Ci is a curve of degree di . If ri

is the remainder of di/4 then the multiplicity of C at the vertex in P(1,1,4) is at least ∑miri . In
particular, if C ∈ |O(14) | and lct(P(1,1,4),C ) ≥ 3/7 then at least one component of C is reduced.

Proof. Denote the coordinates on P(1,1,4) by x ,y ,z . For each Ci , we can write the equation
of Ci as a polynomial of the form

∑bdi /4c
j=0 z j fdi−4 j (x ,y). In the local chart where z ≠ 0, the

curve is defined by a polynomial in x ,y whose minimal degree is ri , so must pass through the
vertex with multiplicity as least ri . Therefore, the curve C must pass through the vertex with
multiplicity

∑
miri .
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If C ∈ |O(14) | and every component of C is non-reduced, then C = 2C ′, where C ′ is a
degree 7 curve that is possibly reducible. By the previous paragraph, such a doubled curve
has multiplicity at least 6 at the vertex, which implies that the log canonical threshold is less
that 3

7 . �

Finally we give a quick corollary of Theorem 4.8 regarding the possible dual graphs of
stable replacements of curves in a linear series on a surface. Let S be a smooth projective
complex surface. Let Λ be a linear series on S such that the general member of Λ is smooth
with genus g ≥ 2.

De�nition 4.12. As in the previous paragraph, let C = m1C1 + · · · + mℓCℓ be a curve with
[C ] ∈ Λ. We say that a stable curve D ′ is a stable replacement of C if there is a smooth one
dimensional pointed curve 0 ∈ T , a map f : T→Λ, and a family of curves D over T such
that

(1) D0 = D ′,
(2) if t ≠ 0 the curve Dt is smooth and isomorphic to the curve defined by f (t ) ∈ Λ, and
(3) f (0) = [C ] ∈ Λ.

Theorem F is immediate from the following corollary.

Corollary 4.13. With C such that [C ] ∈ Λ as above, if D ′ is a stable replacement of C , then

j (Γ(D ′)) ≤ j (Γ(C )) +
∑
(mi − 1).

Remark 4.14. In particular, this shows that the number of loops in the dual graph of D
(which is homotopic to Γ(D)) can be bounded from below by the number of loops in the
dual graph of C and the multiplicities of C . This is most interesting when C is nonreduced.

Proof. Let T→Λ as above. Let CT denote the pullback of the universal curve over Λ to T .
Note, that making a base change of T does not change the stable limit at 0, so after a base
change we may assume that there is a resolution of singularities C′T→CT such that the central
fiber C′0 is reduced. Then C′0 is a semistable model of D , so they have homotopic dual graphs.
The surface CT ⊂ T × S is S2 as it is a Cartier divisor in a smooth variety. The result then
follows from Theorem 4.8(3). �

5. Background on curve singularities and Hacking’s Calabi-Yau limits

The goal of this section is to recall the background on singularities of curves in surfaces
that is needed to prove Theorems D and E (i.e. to show that every smooth projective limit of
a degree 5 curve is planar or hyperelliptic in M (5), and show that every smooth projective
limit of a degree 7 curve is planar).

Let D be a smooth projective family of curves such that the general fiber is a plane curve
and consider the associated family of pairs (XT ,D) as in §2. Let (X CY

0 ,DCY
0 ) be Hacking’s

Calabi-Yau limit. By Remark 3.3, we know that the family DCY is S2. If the general fiber
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is a quintic curve, by Proposition 2.7, X CY
0 = P2, P(1,1,4), M (5), or P(1,4,25), and by

Theorem 4.9 and Lemma 2.8 there are only three possibilities for the intersection graph of
DCY
0 . Likewise, if the general fiber is a septic curve, by Theorem 4.9 and Lemma 2.8 there

are only 7 possible intersection graphs.

Remark 5.1. Without loss of generality we make make several assumptions:

(1) there is a birational map DCYdD (as the general fibers are isomorphic),
(2) by semistable reduction we may assume there is a resolution of singularities D ss of

DCY such that D ss
0 is reduced and nodal,

(3) the map D ss→Dnorm is an isomorphism away from D ss
0 and the X-invariants of Dnorm

0
are determined by Lemma 3.2,

(4) the intersection graph Γ(Dnorm
0 ) is a tree, and

(5) the map D ss→D is regular and only contracts trees of rational curves (as D is the
relative minimal model).

The following lemma implies that if DCY
0 is reduced, then there is a unique singularity.

Lemma 5.2. If DCY
0 is reduced and singular at some point P ∈ DCY

0 , then P is the unique singular
point of DCY

0 and all components of DCY
0 are rational.

Proof. Let d be the degree of the general fiber of DCY. By Theorem 4.9 and Lemma 4.10, all
components of DCY

0 must intersect at a unique point Q and there are no singularities on the
components with multiple branches. So by Remark 5.1(3) and Lemma 3.2(2) the X-invariant
of any point P ∈ DCY

0 \Q is either 0 or g (the arithmetic genus of DCY
0 ). If there are multiple

components, then for any component C ⊂ DCY
0 and any point P ∈ C \Q , XP (C ) is bounded

by the arithmetic genus of C which is less than g , so XP (C ) = 0 and DCY
0 is smooth at P .

Similarly, if DCY
0 consists only of one component, then as every point is unibranch (by

Theorem 4.9) by Remark 5.1(3) and Lemma 3.2(2) there is a unique point where the X-
invariant is not 0, so there is a unique singularity.

IfDCY
0 is reduced and singular, then no component can have geometric genus g , so the strict

transform of each component must be contracted in the map D ss→D (in Remark 5.1(5)).
Thus every component is rational. �

The proofs of Theorems D and E are casework: ruling out all possible singular limits.
All but three cases can be ruled out by straightforward calculations of the log-canonical
threshhold. The three possible cases for DCY

0 that cause the most di�culty all occur for
degree 7 limits:

(1) a reduced irreducible rational degree 7 plane curve with a single unibranch singularity,
(2) a reduced irreducible rational degree 14 curve with a single unibranch singularity in

P(1,1,4), and
(3) the union of a doubled plane cubic and an inflection line.
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These special cases use previously known classification results on unibranch rational curves
of low degree, which are recorded below. For more background references see [5, Ch. 8], [21,
Ch. 2], and [25, Ch. 2].

Throughout, we say a singular point of a curve p ∈ C is a cusp if C is unibranch at p . Let
p ∈ C ⊂ X be a cuspidal point p on the curve C on a smooth surface X . In an analytic
neighborhood of p, the curve C can be written parametrically as

(x ,y) = (ta ,c1tb1 + c2tb2 + . . . )

with 1 < a < b1 < b2 < · · · ∈ ℤ such that a does not divide b1, gcd(a,b1,b2, . . . ) = 1, and
ci ≠ 0 for all i . From the parametrization of a cuspidal singularity it is possible to read o�
many invariants of the singularity. For example, the multiplicity of the cusp C is a and the
log canonical threshold of the pair (X ,C ) near p is (1/a) + (1/b1).

De�nition 5.3. One invariant of the cusp is the multiplicity sequence; the sequence en-
coding the multiplicity of the exceptional divisors in the minimal resolution of the cusp. Let
(X0,C0) := (X ,C ) and let

ci : (Xi ,Ci ) → (Xi−1,Ci−1)

be the blow up of the singular point of Ci−1 with exceptional divisor Ei . Set Ci = (ci )−1∗ Ci−1.
Let c = cn ◦ cn−1 · · · ◦ c1 be the minimal embedded resolution of the cusp p . The multiplicity
sequence of the cusp p ∈ C is the sequence mp := (m1,m2, . . . ,mn), where mi is the multiplicity of
the exceptional divisor Ei in c∗i (Ci−1). This satisfies the inequalities m1 ≥ m2 ≥ · · · ≥ mn = 1.
For simplicity, if Ci−1 is smooth then mi = 1 (and hence C j is smooth for all i ≤ j ≤ n), we
omit all the multiplicities m j = 1 for j ≥ i .

The X-invariant (Definition 3.1) of a cusp singularity can be read o� from its multiplicity
sequence:

(3) Xp =

n∑
i=0

mi (mi − 1)
2

De�nition 5.4. Another invariant of the cusp is the collection of Newton pairs that pa-
rameterize the cusp. Define gi := gcd(a,b1,b2, . . . ,bi ). Then, there is a finite sequence
i1 < i2 < · · · < ik at which gi decreases, i.e. i1 = 1,

gi1 = · · · = gi2−1 > gi2 = · · · = gi3−1 > gi3 = · · · > gik = 1.

Define i0 = 0, b0 = 0, and gi0 = a. For 1 ≤ j ≤ k + 1, let M j = gi j−1 and for 1 ≤ j ≤ k , let
N j = bi j − bi j−1 . The k Newton pairs of the cusp are the k pairs

(m j ,n j ) =
(
M j

M j+1
,
N j
M j+1

)
for 1 ≤ j ≤ k .

27



We can write M j = m jm j+1 . . .mk and N j = n jm j+1 . . .mk . The X-invariant of a cusp
singularity can also be expressed in terms of the Mi [21, 2.1.1]:

(4) Xp =
1
2

©­«(M1 − 1) (N1 − 1) +
k∑
j=2

(M j − 1)N j
ª®¬ .

Remark 5.5. By construction, M j ≥ 2M j+1, so M j ≥ 2k− jMk , and similarly, N j ≥ 2k− jNk .
Because Mk ≥ 2 and Nk ≥ 1, M j ≥ 2k− j+1 and N j ≥ 2k− j . These inequalities relate the
number of Newton pairs k to the X-invariant.

Further observe that N1 = b > a = M1 by construction, so we have the bound

2Xp = (M1 − 1) (N1 − 1) +
∑

2≤ j≤k
(M j − 1)N j

≥ (M1 − 1) (N1 − 1)
≥ (M1 − 1)M1

≥ (2k − 1)2k .

In particular, if k ≥ 2, the first inequality is strict, so for k = 2 we have 2Xp > 12, so Xp ≥ 7. If
k = 3, we obtain 2Xp > 56 so Xp ≥ 29. These bounds will be used to rule out certain cuspidal
curves below.

From the Newton pairs and multiplicity sequences, it is possible to list all unicuspidal ra-
tional curves of low degree, i.e. curves C of degree d with one isolated unibranch singularity
at p ∈ C such that Xp = g (d ), the genus of a degree d plane curve (and no other singulari-
ties). Note that not all numerical solutions to equations such (3) or (4) can actually occur as
multiplicities or Newton pairs of plane curves. The following table lists the rational cuspidal
curves of degrees 3 through 6 with a single cusp. These results are for d = 3,4,5 are derived
in [25, Tables 3.1, 3.2, 6.1]. Alternatively, because Xp < 7 for d ≤ 5, by Remark 5.5, the
cusp is parameterized by a single Newton pair, so the classification also appears in [7, Thm.
1.1]. For d = 6, there are at most two Newton pairs parameterizing the cusp, so one can
obtain explicit equations from [7, Thm. 1.1] and [21, Thm. 1.1]. The only case with two
Newton pairs is given in line 7 in the table below and corresponds to [21, Thm. 1.1(4)] and
the local equation and log canonical threshold can be worked out by hand. The classification
of rational unicuspidal plane curves of degree ≤ 6 is listed in Table 1.
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Table 1. Rational unicuspidal plane curves of degree ≤ 6.

Degree Parameterization
Local equation

of cusp
Multiplicity
sequence

Newton
pairs

Log canonical
threshold

3 (x ,y) = (t2,t3) y2 = x3 (2) (2,3) 5/6
4 (x ,y) = (t2,t7) y2 = x7 (2,2,2) (2,7) 9/14
4 (x ,y) = (t3,t4) y3 = x4 (3) (3,4) 7/12
5 (x ,y) = (t2,t13) y2 = x13 (2,2,2,2,2,2) (2,13) 15/26
5 (x ,y) = (t4,t5) y4 = x5 (4) (4,5) 9/20
6 (x ,y) = (t3,t11) y3 = x11 (3,3,3,2) (3,11) 14/33

6 (x ,y) = (t4,t6 + t11) y4 = 2x3y2 − x6
+4x7y + x11 (4,2,2,2,2) (2,3), (2,5) 5/12

6 (x ,y) = (t5,t6) y5 = x6 (5) (5,6) 11/30

For higher degree curves, it is necessary to appeal to stronger invariants to understand the
possible singularities:

De�nition 5.6. The semigroup of a cuspidal singularity p ∈ C , denotedWp ⊂ ℕ, is the set of
local intersection multiplicities of C with other curves at p, i.e.

Wp := {dimℂOC ,p/( f ) | f ∈ OC ,p , f ≠ 0} ⊂ ℕ.

Wp has a set of minimal generators {0,w1,w2, . . . ,wk+1}. The wi can be expressed in terms
of the Newton pairs of the cusp:

w1 = M1, w2 = N1, w j = m j−2w j−1 + N j−1 3 ≤ j ≤ k + 1.

Example 5.7. In the case of a cusp p ∈ C with one Newton pair (a,b), the curve can be
analytically locally parametrized by (x ,y) = (ta ,tb ) with gcd(a,b) = 1. C has analytic local
equation: xb = ya , log canonical threshhold: (1/a) + (1/b), X-invariant: (a − 1) (b − 1)/2, and
semigroupWp = 〈0,a,b〉.

If p ∈ C is a cusp with semigroupWp , define

Rp (k ) := #{Wp ∩ [0,k )}

to be the counting function of elements inWp between 0 and k − 1. The counting function
satisfies interesting properties. In particular, if a curve C is a cuspidal d plane curve, these
counting functions must satisfy particular constraints related to the degree d of the curve.
The multiplicity, Newton pairs, and intervals in the semigroup have been widely used to
study plane curves, e.g. [24, 27, 7, 3].

In [3, Thm. 6.5, Rem. 6.6], Borodzik and Livingston prove the following strong result on
existence of such curves: for a rational cuspidal curve of degree d with n cusps p1, . . . ,pn and
counting functions Rp1 , . . . ,Rpn , then for any j ∈ {−1, . . . ,d − 2},

29



(5) min
k1,...,kn∈ℤ;

k1+···+kn= j d+1

(Rp1 (k1) + · · · +Rpn (kn)) =
( j + 1) ( j + 2)

2
.

We conclude with a useful computation of log canonical threshholds.

Lemma 5.8. Let R1, ...,Rk ⊂ S be curves in a smooth surface S such that P ∈ S is the unique point
in R1 ∩Ri (or work with the local intersection numbers). Assume

lengthP (R1 ∩Ri ) = ℓi .

Assume R1 has a singularity at P with analytic local equation xa = yb with a and b coprime. Assume
that analytically locally at P , the curve Ri is unibranch. If we set the weight of x equal to b and the
weight of y equal to a, then the weight wi of the local analytic equation of Ri satis�es:

wi ≥ min{ab ,ℓi }.

It follows that

lct(S ,c1R1 + ... + ckRk ) ≤
a + b

c1ab + c2min{ab ,ℓ1} + · · · + ck min{ab ,ℓk }
.

A useful special case is the case of two curves R1 and R2 where R1 is smooth at P , R2 is unibranch
at P and they meet to length ℓ . In this case, analytic locally we can write R1 as x = yℓ , and we have

lct(S ,c1R1 + c2R2) ≤
1 +ℓ

ℓ (c1 + c2)
.

Proof. Let ` : S̃→S be the (b ,a) weighted blow-up of (x ,y) with exceptional divisor E . Let R̃1

and R̃i be the strict transforms of R1 and Ri . Then

ℓi = R̃1 · c∗Ri = R̃1 · (R̃i +wiE) = R̃1 · R̃i +wi , and
ℓi = R̃i · c∗R1 = R̃i · (R̃1 + (ab)E) = R̃1 · R̃i + ab (R̃2 · E).

Thus R̃i · E = wi/ab . If the weight wi < ab then this intersection is fractional which implies
that R̃i meets E at a singularity. But, the (b ,a) weighted blow-up of xa = yb has the property
that it is a resolution of R1 and R̃1 meets E at exactly one point that is smooth. As R1 and
Ri are both unibranch at P , R̃1 and R̃i do not intersect over P , so R̃1 · R̃i = 0, i.e. ℓi = wi .
This shows that either wi ≥ ab or wi = ℓi , and hence w ≥ min{ab ,ℓ }. To finish, note that

KS̃ = `∗KS + (b + a − 1)E , and `∗
(∑

ciRi
)
=

(∑
ciR̃i

)
+ (c1ab + c2wi + · · · + ckwk )E .

Therefore, the log canonical threshold of the pair satisfies

lct(S ,
∑

ciRi ) ≤
a + b

c1ab + c2w2 + · · · + ciwi
≤ a + b
c1ab + c2min{ab ,ℓ1} + · · · + ck min{ab ,ℓk }

. �
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6. On reduced limits of plane curves

In this section we work in the setting of §5 and study the possible reduced curves that can
appear as DCY

0 . For degrees 5 and 7 we prove that if DCY
0 is reduced and singular, then it

is fact irreducible, rational, and has a unique singular point which is unibranch; i.e. DCY
0 is

unicuspidal. By proving that the log canonical threshold of rational unicuspidal plane curves
of degree d = 5 or d = 7 is strictly smaller that 3

d , we prove that these cannot appear as D
CY
0 .

Therefore, if DCY
0 is reduced, it must be smooth. This proves Theorem D because DCY

0 is
always reduced when d = 5, and reduces Theorem E to the case DCY

0 is nonreduced.

6.1. On Hacking’s Calabi-Yau limits of quintic plane curves that are reduced. In this
subsection we prove Theorem D. All components of DCY

0 are reduced, so we show that the
only reduced limits of families of quintic curves are smooth curves DCY

0 ⊂ P2 or DCY
0 ⊂ M (5).

For limits in M (5), the proof of Theorem 1.9 shows that the curves DCY
0 are all hyperelliptic.

First we show:

Proposition 6.1. If D is a smooth family of curves such that the general �ber is a plane quintic then
Hacking’s Calabi-Yau limit DCY

0 is smooth.

Proof. Suppose for contradiction that D0 is a smooth limit of a family of plane quintics,
and DCY

0 is singular. By Lemma 5.2, DCY
0 has a unique singularity at P , all components are

rational, and by Theorem 4.9 and Lemma 4.10 there are at most 3 components with specified
intersection graph and all components are reduced.

In Lemma 6.2 we show there are no possible singular limits DCY
0 in P2. In Lemma 6.3 we

show there are no possible singular limits DCY
0 in P(1,1,4). In Lemma 6.4 we show there are

no possible singular limits DCY
0 in P(1,4,25). In Lemma 6.5 we show there are no possible

singular limits DCY
0 in M (5). Therefore by Theorem 2.7, the result follows. �

Theorem D follows easily from the proposition.

Proof of Theorem D. By Proposition 6.1, Hacking’s Calabi-Yau limit DCY
0 ⊂ X CY

0 is smooth.
By Proposition 2.7, X CY

0 is either P2, P(1,1,4), P(1,4,25), or M (5). By Theorem 1.6, limits
of quintic curves on P(1,1,4) and P(1,4,25) are not Cartier and by degree considerations
cannot be smooth. Therefore, X CY

0 = P2 or M (5) and DCY
0 is a Cartier divisor on X CY

0 . If
X CY
0 = M (5), then by the computation in the proof of Theorem 1.9 DCY

0 is hyperelliptic. �

For the following lemmas, we assume the following about DCY
0 as in the proof of Proposi-

tion 6.1.

(∗) DCY
0 has at most three components, all of which are rational and unibranch, there is a unique

singular point P ∈ DCY
0 of multiplicity at most 3, and lct(P2,DCY

0 ) ≥ 3/5.

Lemma 6.2. There is no singular limit DCY
0 satisfying (∗) in P2.
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Proof. From (∗), there are five cases to rule out:

Case 1 Case 2 Case 3 Case 4 Case 5
Components 3 3 2 2 1
Degrees 3 + 1 + 1 2 + 2 + 1 4 + 1 3 + 2 5

(Case 1) The cubic is cuspidal at P , so the multiplicity is 4, a contradiction to (∗).
(Case 2) Two conics and a line meeting at one point has lct(P2,DCY

0 ) = 1/2 (Lemma 5.8),
a contradiction to (∗).

(Case 3) There are two rational unicuspidal quartics (see Table 1: one has multiplicity 3
at the singular point, so the union with the line has multiplicity 4, contradicting
(∗). The other has local equation x2 + y7 and meets the line to length 4, so by
Lemma 5.8, lct(P2,DCY

0 ) ≤ 1/2 < 3/5, a contradiction to (∗).
(Case 4) The cubic is cuspidal at P and meets the conic to order 6, so by Lemma 5.8,

lct(P2,DCY
0 ) ≤ 5/12 < 3/5, a contradiction to (∗).

(Case 5) There are two rational unicuspidal quintics (Table 1): one has a multiplicity 4
point, a contradiction. The other has a singularity with analytic equation y2 = x13,
which has log canonical threshold 15/26 < 3/5, a contradiction to (∗). �

Lemma 6.3. There is no singular limit DCY
0 satisfying (∗) in P(1,1,4).

Proof. Assuming that such a limit DCY
0 ⊂ P(1,1,4) existed, it would have degree 10. By

Lemma 4.11, DCY
0 is singular at the vertex, so by (∗) every component of DCY

0 passes through
this point.

If DCY
0 has three components, then by the multiplicity bound in (∗) each component passes

through the vertex with multiplicity 1, but 10 = 2 ≠ 3 (mod 4), so this impossible.

If DCY
0 has two components, then by the multiplicity bound in (∗), Lemma 4.11, and

because 10 = 2 (mod 4), both components must pass through the vertex with multiplicity 1.
Therefore, by (★) both components are smooth and rational. The possible degrees of such
a configuration are 9 + 1 or 5 + 5. Degrees 9 + 1 is impossible as a smooth degree 9 curve in
P(1,1,4) is not rational. The second case is impossible as the vertex can be the only point of
intersection of the two curves (which are each smooth at the vertex); blowing up this point
yields two smooth curves on F4 meeting to order 6, which by Lemma 5.8 has log canonical
threshold at most 7/12, which is too small.

Finally, suppose the curve DCY
0 is irreducible with a unicuspidal singularity at the vertex.

By blowing up the vertex c : F4 → P(1,1,4), we produce a unicuspidal curve on F4. By (∗),
we know lct(P(1,1,4),DCY

0 ) ≥ 3/5. Let E be the exceptional divisor of c and consider the
pair of equations

c∗(KP(1,1,4)) = KF4 +
1
2
E , and c∗(DCY

0 ) = D̃CY
0 +

a
4
E

where a ∈ ℤ+ and D̃CY
0 is the strict transform of DCY

0 .
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We analyze the rational unicuspidal curve D̃CY
0 . By the log canonical threshold assumption,

1
2
+ 3a
20
≤ 1,

so a ≤ 3. Intersecting the second equation with a fiberℓ of the ruled surface F4 (whose image
is a section of O(1) on P(1,1,4)) gives

10
4
= D̃CY

0 ·ℓ +
a
4

and as D̃CY
0 ·ℓ ∈ ℤ, this proves that a = 2. The arithmetic genus of D̃CY

0 is computed by:

2ga (D̃CY
0 ) − 2 = (KF4 + D̃CY

0 ) · D̃
CY
0 = (KP(1,1,4) +DCY

0 ) · D
CY
0 − E · D̃CY

0 = 10 − 2 = 8

so the arithmetic genus is 5, which is the same as the X-invariant of the cusp in D̃CY
0 . By

Remark 5.5, the cusp must be parameterized by a single Newton pair (M1,N1) = (a,b) with

10 = (M1 − 1) (N1 − 1) = (a − 1) (b − 1).

The possible values of (a,b) are (a,b) = (2,11) or (3,6). In the first case, the log canonical
threshold is less than 3

5 , which is too small, and in the second case, the curve is not unibranch,
so both give a contraction to (∗). Therefore, no such curve exists on P(1,1,4). �

Lemma 6.4. There is no singular limit DCY
0 satisfying (∗) in P(1,4,25).

Proof. This follows from the previous lemma: in this case all of the computations in Lemma 6.3
can be done locally around the 1

4 (1,1) singularity and yield the same contradictions. �

Lemma 6.5. There is no singular limit DCY
0 satisfying (∗) in M (5).

Proof. The surface M (5) is the partial smoothing of the 1
4 (1,1) singularity on P(1,4,25), and

can be realized as a degree 26 surface in the weighted projective space P(1,2,13,25). The
curveDCY

0 is a complete intersection of the degree 26 surface and a degree 25 surface. Denote
by [x : y : z : w] the weighted coordinates on P(1,2,13,25). Up to change of coordinates, we
can realize this pair (M (5),DCY

0 ) as ((xw = f26(x ,y ,z )), (w = 0)) in P(1,2,13,25), where f26
is a generic polynomial of degree 26 in x ,y ,z . Therefore, the curve DCY

0 can be expressed as
( f26(x ,y ,z ) = 0) ⊂ P(1,2,13). (See also Example 1.3 and Example 1.11.)

If the curve has three components of degrees d1, d2, and d3 with d1 + d2 + d3 = 26 then
by (∗), they must all be smooth and intersect at a unique point. Because at most one di
can be a multiple of 13, the remaining two curves must go through the 1

13 (1,2) singular
point. Because they are smooth at this point, we claim that each di must be congruent to 1
(mod 13). Indeed, writing the coordinates on P(1,2,13) as [x : y : z ], a curve of degree di
has the form (bdi /13c∑

i=0

z i fdi−13i (x ,y) = 0

)

33



where fdi−13i (x ,y) is a polynomial of degree di − 13i . If di ≠ 1 (mod 13), then in a neighbor-
hood of the point [0 : 0 : 1], this vanishes to order at least two, hence is not smooth. But, it
is impossible that d1 + d2 + d3 = 26 and each di ≡ 1 (mod 13).
If the curve has two components of degrees d1 and d2, by (∗) it can pass through at most

one of the singular points of P(1,2,13), so both degrees must either be 0 (mod 2) or 0
(mod 13). Because d1 + d2 = 26, these are mutually exclusive, and for n ∈ {2,13}, d1 ≠ 0
(mod n) ⇐⇒ d2 ≠ 0 (mod n). Therefore, both components must pass through exactly
one of the singular points. Suppose the curves contain the 1

13 (1,2) singularity and di ≡ 0
(mod 2). Because the curve has multiplicity at most three at the singularity, if ri is the
remainder of di (mod 13) then r1 + r2 ≤ 3. However, d1 + d2 = 26, and this is impossible.

Now suppose that the curves contain the 1
2 (1,1) singularity and di ≡ 0 (mod 13). Because

d1 + d2 = 26, this implies that d1 = d2 = 13. By (∗), these two unibranch curves meet only
at the 1

2 (1,1) singularity. Blowing up this singular point of the surface yields two curves
intersecting at one point to order at least 5, contradicting that the log canonical threshold is
at most 3

5 .

Finally, assume that the curve has only one component. Because the curve has degree 26 in
P(1,2,13) and has only unibranch singularities, it must avoid the singularities of the surface.
Suppose there is a cusp in the smooth locus of the surface. The curve has arithmetic genus
6, so by Remark 5.5 it is parameterized by a single Newton pair (M1,N1) = (a,b) such that

12 = (M1 − 1) (N1 − 1) = (a − 1) (b − 1).

The only solutions are (a,b) = (2,13), (3,7), or (4,5), and each of these has log canonical
threshold smaller than 3

5 , contradicting (∗). �

6.2. On Hacking’s Calabi-Yau limits of septic plane curves that are reduced. In this
section we show that the only reduced limits of degree 7 curves are smooth curves DCY

0 ⊂ P2.
Throughout, we assume for contradiction that DCY

0 is reduced but singular. By Lemma 5.2,
Theorem 4.9, and Lemma 4.10 we make the following assumptions about DCY

0 :

(�) DCY
0 has at most four components, all of which are rational and unibranch, there is a unique

singular point P ∈ DCY
0 of multiplicity at most 4, and lct(P2,DCY

0 ) ≥ 3/7.

Proposition 6.6. If D is a smooth family of curves such that the general �ber is a plane septic and
Hacking’s Calabi-Yau limit DCY

0 is reduced then DCY
0 is smooth.

Proof. For contradiction we assume DCY
0 is singular, so we may assume (�). Except for the

case of a single component, these possibilities can all be ruled out by computing that their
log canonical thresholds are too small. These computations are carried out in the following
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lemmas as indicated in the table.

Curves in P2 Curves in P(1,1,4)
Components Degrees Proof

4 2 + 2 + 2 + 1 Lem. 6.7
3 3 + 2 + 2 Lem. 6.8
3 4 + 2 + 1 Lem. 6.8
3 5 + 1 + 1 Lem. 6.8
2 6 + 1 Lem. 6.9
2 5 + 2 Lem. 6.9
2 4 + 3 Lem. 6.9
1 7 Lem. 6.11

Components Proof
multiple Lem. 6.10
one Prop. 6.13

�

Lemma 6.7. There is no reduced limit DCY
0 ⊂ P2 satisfying (�) with 4 components.

Proof. A line and 3 conics meeting at 1 point has lct(P2,DCY
0 ) = 4/11, a contradiction. �

Lemma 6.8. There is no reduced limit DCY
0 ⊂ P2 satisfying (�) with 3 components.

Proof. Suppose DCY
0 = R1 + R2 + R3 is such a limit satisfying (�) and assume that R1 is the

curve of degree ≥ 3 – so R1 is cuspidal. By multiplicity considerations, the singularity of R1

must be a double point – so analytically locally has equation y2 = x2X+1 (X is the X-invariant).

If the degrees are 3+2+2 then the cusp has local equation y2 = x3 and the conics must meet
the cubic to length 4. By Lemma 5.8 we have

lct(P2,DCY
0 ) ≤

5
6 + 6 + 6 < 3/7,

a contradiction. If the degrees are 4+2+1 then the quartic cusp has local equation y2 = x7.
So by Lemma 5.8,

lct(P2,DCY
0 ) ≤

9
14 + 8 + 4 < 3/7.

If the degrees are 5+1+1, then the quintic has local equation y2 = x13. So by Lemma 5.8,

lct(P2,DCY
0 ) ≤

15
26 + 5 + 5 < 3/7.

�

Lemma 6.9. There is no reduced limit DCY
0 = R1 +R2 ⊂ P2 with two components satisfying (�).

Proof. Suppose R1 + R2 has degrees 6 + 1. By Table 1, there are three rational unicuspidal
sextic curves. Two of them have multiplicity at least 4, so the multiplicity of the intersection
point of R1 + R2 is too large. The remaining case has log canonical threshold 14

33 which is
smaller than 3

7 , so the union R1 + R2 is too singular. Therefore, degrees 6+1 for R1 and R2

are impossible.
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Next suppose R1 + R2 has degrees 5 + 2. By Table 1, there are two rational unicuspidal
quintics: one has a multiplicity 4 point, and the other has a singularity with analytic equation
y2 = x13. In the first case the multiplicity of R1 + R2 at the intersection point is ≥ 5 which
is too singular. In the second case, in these analytic coordinates we consider y with weight
13 and x with weight 2. As the intersection R1 ∩ R2 has length 10, Lemma 5.8 implies that
lct(P2,DCY

0 ) ≤ 15/(26 + 10) = 5/12 which is too small, thus degrees 5 and 2 are impossible.

Finally, suppose R1 + R2 has degrees 4 + 3. There are two rational unicuspidal quartics
(Table 1): one has a multiplicity 3 point, and the other has a singularity with analytic equation
y2 + x7 = 0. In the case of the multiplicity 3 singularity, R2 must be a cubic with an ordinary
cusp at P . In this case, DCY

0 has multiplicity 5 at that point, which is too great. In the case
that R1 has a singularity of the form y2 + x7 = 0, then Lemma 5.8 implies that lct(P2,DCY

0 ) ≤
9/26 < 3/7 so is too singular. Therefore, degrees 4 and 3 are impossible. �

Lemma 6.10. There is no reduced limit DCY
0 ⊂ P(1,1,4) with multiple components.

Proof. By Lemma 5.2 and Lemma 4.11, the unique singular point of DCY
0 must be at the

vertex, which is the only place the components of DCY
0 can intersect. Therefore, by the log

canonical threshold assumption, there can be at most four components of DCY
0 . If there are

exactly four components and they all pass through the vertex, by the log canonical threshold
assumption, they must each pass through the vertex with multiplicity 1. By Lemma 4.11,
they must each have degree 1 (mod 4), but the degrees must sum to 14, which is impossible.
Similarly, if there are three components, at least two must have degree 1 (mod 4) and the
third may have degree 1 or 2 (mod 4), which in both cases is impossible to sum to 14.
If there are two components, they could have multiplicities (1,1), (1,2), (1,3), or (2,2) at
the vertex, but the only case that could possibly sum to 14 is if both curves have degree 1
(mod 4), so the curves are either a degree 1 and degree 13 curve or a degree 5 and degree
9 curve. However, any smooth curve of degree at least 6 in P(1,1,4) is not rational, so the
larger degree component therefore must be singular at the vertex. In the first case, the degree
13 curve has equation

∑3
i=0 f13−4i (x ,y)z i = 0, where x ,y ,z are the weighted coordinates on

P(1,1,4), and f j (x ,y) denotes a degree j homogeneous polynomial in x and y . To be singular
at the vertex [0 : 0 : 1], the term f1(x ,y) must vanish, so in fact this curve has multiplicity
at least 5 at the vertex, contradicting our assumption on multiplicity. Similarly, the degree 9
curve in the second case has multiplicity at least 5 at the vertex, also a contradiction. �

Now, we have shown that any reduced curve DCY
0 has exactly one component, is rational,

and can have at most one singular point. We will use classification results for rational cuspidal
plane curves to prove no such curves exist with log canonical threshold at least 3

7 . First,
assume DCY

0 is a plane curve.

Lemma 6.11. If C ⊂ P2 is a reduced and irreducible degree 7 rational curve with a single cuspidal
singularity at p ∈ C then analytic locally at p, C is parametrized by t ↦→ (t6,t7). In particular,
lct(P2,C ) < 3

7 .
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Proof. The X invariant of such a cusp is 15 (the genus of a smooth degree 7 plane curve).
Thus according to Remark 5.5, the number of Newton pairs of the cusp is at most 2. When
k = 1 then by [7, Thm. 1.1] the only possibility is (a,b) = (6,7), as desired in the statement
of the lemma. When k = 2, then by looking at the classification [21, Thm. 1.1] of unicuspidal
rational curves with 2 Newton pairs there are no possibilities. �

Remark 6.12. Lemma 6.11 implies that we could expand Table 1 to list all unicuspidal
rational curves of degree ≤ 7 by adding the following row:

Degree Parameterization
Local equation

of cusp
Multiplicity
sequence

Newton
pairs

Log canonical
threshold

7 (x ,y) = (t6,t7) y6 = x7 (6) (6,7) 13/42

Now, to complete the proof of Proposition 6.6, it su�ces to consider the case that DCY
0 is

a curve in P(1,1,4).

Proposition 6.13. If C ⊂ P(1,1,4) is a reduced and irreducible degree 14 rational curve with an
isolated unibranch singularity at the vertex, then lct(P(1,1,4),C ) < 3/7.

Proof. Suppose that C is as in the hypothesis of the proposition. Assume for contradiction
that lct(P(1,1,4),C ) ≥ 3

7 . Let
c : F4→P(1,1,4)

be the minimal resolution of P(1,1,4) with exceptional divisor E ⊂ F4. Then

c∗KP(1,1,4) = KF4 +
1
2
E .

Let C̃ be the strict transform of C in F4. Because 4C is Cartier, we have

c∗C = C̃ + a
4
E

for a ∈ ℤ+. The assumption that lct(P2,C ) ≥ 3/7 implies that

1
2
+ 3a
28
≤ 1

so a ≤ 4. Finally, intersecting c∗C = C̃ + a4E with a fiber ℓ of the ruled surface F4 gives

14
4
= C̃ ·ℓ + a

4

and C̃ ·ℓ ∈ ℤ implies that a = 2. We can use this to compute the arithmetic genus of C̃ is 14:

2ga (C̃ ) − 2 = (KF4 + C̃ ) · C̃ = (KP(1,1,4) +C ) ·C − E · C̃ = 28 − 2 = 26.

Alternatively, using the basis 〈E ,ℓ 〉 for Pic(F4), we can compute C̃ ∈ |3E + 14ℓ | to determine
the genus.

By assumption, C̃ is then a rational curve with a single unibranch singularity with X-
invariant 14 at the unique intersection point p ∈ C̃ ∩ E . Moreover (F4, 37C̃ ) is log canonical.
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By Remark 5.5, the cusp is parameterized by k Newton pairs with k ≤ 2. If k = 2 then there
are two Newton pairs with M1 = a ≥ 4, b1 > a, and gcd(a,b1) ≥ 2, which implies b1 ≥ 6.
Thus

lct(F4,C̃ ) ≤
1
4
+ 1
6
<
3
7
,

a contradiction.

Therefore, there can only be one Newton pair (M1,N1) = (a,b). In this case, 28 = (M1 −
1) (N1 − 1) = (a − 1) (b − 1). This has three solutions: (a,b) = (5,8), (3,15) or (2,29). In the
first two cases,

lct(F4,C̃ ) =
1
5
+ 1
8
<
3
7
,

or

lct(F4,C̃ ) =
1
3
+ 1
15

<
3
7
,

which both give a contradiction as above.

It remains to show that there is no rational curve C̃ ⊂ P4 in the linear system |3E + 14ℓ |
with a single unibranch singularity along E having analytic local equation y2 = x29. We rule
out this last possibility by transforming this curve to a cuspidal curve in P2 and applying the
work of Borodzik and Livingston. This is carried out in the following two lemmas. �

Lemma 6.14. If there is a curve C̃ ⊂ F4 as above, then there is an irreducible rational degree 7 curve
Γ ⊂ P2 with two cusps at points p1,p2 ∈ P2 having each having a single Newton pair: (2,19) at p1
and (4,5) at p2.

Proof. Let
c : (X ,D) → (F4,C̃ )

be the minimal embedded resolution (with D := c∗(C̃ )red). From above, C̃ has a cusp with
Newton pair (2,29) at its unique set-theoretic intersection point p = E ∩ C̃ . Let Fp ∈ |ℓ | be
the fiber going through p .

On X , D is a rational tree consisting of the strict transform C̃X of C̃ and 16 exceptional
divisors E1, · · · ,E16 (shown in the graph below).

E1 E4 E5 E6 E14 E16 E15

EX C̃XFp ,X

bottom

top

left right

On X , E2
i = −2 for 1 ≤ i ≤ 15 and E2

16 = −1. EX (resp. Fp ,X ) is the strict transform of E
(resp. Fp). We also have E2

X = −5 and F 2
p ,X = −1.

The pair (F4,C ) is obtained by contracting the bottom curves of the dual graph. It is also
possible to simultaneously contract the left and the right curves. The result of this contraction
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is a smooth rational surface of Picard rank 1, so must be P2. Let Γ ⊂ P2 be the image of
C̃X . From the description of the dual graph, this produces two unibranch singularities on Γ
with Newton pairs (2,19) and (4,5). (Note that the surface X is not a minimal resolution
of (P2,Γ); to obtain the minimal resolution, we must first contract Fp ,X , and at this point
the dual graph of the exceptional locus uniquely determines the singularity type.) Now, the
image of E5 is a line in P2, which together with the above dual graph can be used to show
that Γ has degree 7 as desired. �

To complete the proof of the proposition, we show that Γ does not exist.

Lemma 6.15. There is no degree 7 rational curve Γ ⊂ P2 with two cuspidal singularities, each with
a single Newton pair of types (2,19) and (4,5).

Proof. Suppose that such a curve exists, and let p1 be the (2,19) cusp and p2 the (4,5) cusp.
The associated semigroups (Definition 5.6) are:

Wp1 = {0,2,4,6,8,10,12,14,16, . . . } andWp2 = {0,4,5,8,9,10,12,13,14,15, . . . }.
Now we apply Equation (5) when d = 7, n = 2, and j = 2. This reads

min
k1,kd ∈ℤ;
k1+k2=15

(Rp1 (k1) +Rp2 (k2)) = 6.(6)

Here recall that Rpi (k ) := #Wpi ∩ [0,k ).
Let R (k1,k2) = Rp1 (k1) + Rp2 (k2). In the case k1 ≥ 13 (so k2 ≤ 2), then Rp1 (k1) ≥ 7, so

R (k1,k2) ≥ 7. Similarly, in the case k2 ≥ 13, then Rp2 (k2) ≥ 7, so R (k1,k2) ≥ 7 > 6. Checking
all intermediate values:

R (12,3) = 7 R (11,4) = 7 R (10,5) = 7 R (9,6) = 8 R (8,7) = 7
R (7,8) = 7 R (6,9) = 7 R (5,10) = 8 R (4,11) = 8 R (3,12) = 8

proves that Γ does not exist. �

Remark 6.16. The previous arguments rely heavily on the classification of rational unicusp-
idal plane curves for d ≤ 6 in Table 1 and for degree d = 7 in Lemma 6.11. To generalize the
arguments in this section to larger primes p, one at least needs a bound on the log canonical
threshold of unicuspidal plane curves of degree d ≤ p . For degree ≤ 7, we see that the log
canonical threshold of the curve is always less than 3

d . Note that this is not always the case:
Orevkov has exhibited two sporadic curves rational unicuspidal curves with a single Newton
pair, one of degree 8 and one of degree 16, with log canonical threshold larger than 3

d ([27],
or [7, Thm. 1.1(e)(f)]). However, these are highly special: Orevkov conjectures that these are
the only examples of unicuspidal rational curves with a single Newton pair with a particularly
large degree as compared to the multiplicity [27, Pg. 2]. To that end, we conclude this section
with a classification question.

Question. For what degrees d does there exist a unicuspidal rational plane curve of degree d with
log canonical threshold at least 3

d ? Of particular interest is the case when d = p is a prime number.
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7. On Hacking’s Calabi-Yau limits of septic plane curves that are nonreduced

We use the results of the previous section and several additional computations to prove
Theorem E. By §6, we only need to consider the case that DCY

0 is non-reduced. Throughout
this section we assume for contradiction that there is a nonreduced component of DCY

0 .

Proof of Theorem E. By Proposition 6.6, we only need to consider the case that there is an
nonreduced component of DCY

0 . The following table enumerates the possible degrees of
reduced and nonreduced components of DCY

0 .

Curves in P2 Curves in P(1,1,4)

Reduced
degrees

Nonreduced
degrees

Proof

5 1 Lem. 7.1
3 2 Lem. 7.1
3 1 + 1 Lem. 7.2
1 3 Prop. 7.4
1 2 + 1 Lem. 7.2

4 + 1 1 Lem. 7.2
3 + 2 1 Lem. 7.3
2 + 1 2 Lem. 7.3

Reduced
degrees

Nonreduced
degrees

Proof

12 1 Lem. 7.1
6 4 Lem. 7.1
4 5 Lem. 7.1
4 4 + 1 Lem. 7.2

8 + 4 1 Lem. 7.2

In each case, we prove that the configuration gives a contradiction. The computations are
carried out in the lemmas and propositions indicated in the table. �

Lemma 7.1. It is not possible that DCY
0 = R + 2N ⊂ X CY

0 is non-reduced and has two components,
except for possibly in the case of a line and a doubled cubic curve.

Proof. Suppose for contradiction that there is such a limit that is not a line and a doubled
cubic. Write:

DCY
0 = R + 2N

where R is the reduced curve and N is the non-reduced curve. By Lemma 4.10 and The-
orem 4.9, R and N meet at a single point, and if there are any singularities of R and N
they must be unibranch. By degree considerations (in the previous table) either R or N is
smooth: one of them is either irreducible of degree 1 or 2 in P2 or irreducible of degree 1
or 4 in P(1,1,4). By Lemma 5.8, if the intersection of R and N has length at least 4 then
lct(X CY

0 ,DCY
0 ) is too small. There is only one remaining case to consider: DCY

0 ⊂ P(1,1,4)
and R and N have degrees 12 and 1 respectively.

In this case, the degree 12 curveR must be singular and rational with cuspidal singularities.
The X-invariant of any cusp on R is the genus of a smooth degree 12 curve in P(1,1,4) which
is 10. By Lemma 3.2, such a cusp cannot lie in the normal locus of DCY. Therefore, there is
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exactly one cusp at the unique intersection point of R and N . By multiplicity considerations,
we see that the cusp in R is a double point. Note: R and N do not meet at the vertex in
P(1,1,4): R is Cartier and any Cartier divisor meeting the vertex has multiplicity at least 4,
so R + 2N would be too singular.

Therefore, R and N meet at a smooth point in P(1,1,4). Blowing up this smooth point,
the strict transforms of R and N still intersect (as they met to length 3 on P(1,1,4)). Blow-
ing up this new intersection point gives an exceptional divisor with discrepancy 3/8. Thus
lct(P(1,1,4),R + 2N ) ≤ 3/8 < 3/7 a contradiction. �

Lemma 7.2. It is not possible for DCY
0 to be the union of a reduced curve and two non-reduced curves.

Proof. Suppose for contradiction that

DCY
0 = R + 2N1 + 2N2.

By Lemma 4.10 and Theorem 4.9, DCY
0 has the following intersection graph.

2

2

There are 3 cases.

(1) DCY
0 ⊂ P2, R has degree 3, and N1 and N2 both have degree 1. R must be a cuspidal

rational curve. The cusp must lie on the line N1 or N2 and the length of the intersec-
tion must be 3. By Lemma 5.8, lct(P2,R + 2N1 + 2N2) ≤ 5/12 < 3/7, a contradiction.

(2) DCY
0 ⊂ P2, R has degree 1, N1 has degree 2, and N2 has degree 1. The doubled conic

N1 and the doubled line N2 are tangent at a point. By Lemma 5.8, lct(P2,2N1 + 2N2)
is at most 3/8, a contradiction.

(3) DCY
0 ⊂ P(1,1,4), R has degree 4, N1 has degree 4 and N2 has degree 1. R and N1 are

both smooth and meet at a single point to length 4. Then, by Lemma 5.8, R + 2N1

has log canonical threshold at most 5/12, a contradiction. �

Lemma 7.3. It is not possible that DCY
0 has two reduced components and 1 nonreduced component.

Proof. Suppose for contradiction that

DCY
0 = R1 +R2 + 2N .

By Lemma 4.10 and Theorem 4.9, DCY
0 has the following intersection graph. There are four

2

cases:

(1) DCY
0 ⊂ P2 and R1, R2, N have degrees 4, 1, and 1 respectively.

(2) DCY
0 ⊂ P2 and R1, R2, N have degrees 3, 2, and 1 respectively.
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(3) DCY
0 ⊂ P2 and R1, R2, N have degrees 2, 1, and 1 respectively.

(4) DCY
0 ⊂ P(1,1,4) and R1, R2, N have degrees 8, 4, and 1 respectively.

All of these curves must be rational and everywhere unibranch. Any singularity must occur
at the unique intersection point with N . In cases (1), (2), and (4) this shows the unique
intersection point has multiplicity 5 which is too large by (H4). In case (3), this would force
that R1, R2, and N only meet at a single point p, but this means that R2 and N are both
tangent lines to the conic R1, which is impossible as the tangent line is unique. �

The final case to eliminate is the possibility of a reduced line and a non-reduced (doubled)
cubic curve in P2.

Proposition 7.4. The curve DCY
0 ⊂ P2 is not the union of a doubled cubic and a line.

We will use a series of lemmas in the proof of the proposition.

Lemma 7.5. If DCY
0 consists of a double cubic curve and a line, then the cubic is smooth, the line is

an in�ection line, and the smooth limit D0 must be the component of Dnorm
0 that maps to N .

Proof. Suppose that DCY
0 = R + 2N , where R is a line and N is a cubic. By Theorem 4.9, N

cannot be nodal, and N cannot be cuspidal as the log canonical threshold of a double (non-
reduced) curve with a cusp is 5/12 < 3/7. Therefore, N must be smooth. Theorem 4.9 also
implies R and N meet at a single point with length 3, so R is an inflection line. The smooth
limit D0 must be the component of Dnorm

0 that maps to N because any other component of
Dnorm
0 is necessarily rational. �

Lemma 7.6. If DCY
0 ⊂ P2 is a doubled smooth cubic and an in�ection line, there is a suitable

weighted-blow up of the intersection point of the curves in the family (X CY,DCY) that improves the
singularity: either the strict transform of DCY in the exceptional divisor is reduced, or consists of two
curves (one of which is doubled) meeting to order at most 2.

Proof. Suppose that (X CY
0 ,DCY

0 ) = (P
2,R+2N ), whereR is a line inP2 andN is a smooth cubic

meeting R at one point to with length 3. In this case, the central fiber of the normalization
Dnorm
0 necessarily contains 2 curves: the curve whose image in (X ,D) is the smooth curve D0

(which double covers the doubled elliptic curve, and by abuse of notation which will denote
also by D0) and the strict transform of the line. The main idea in this proof is that the
singularity at the intersection point of R and N has the worst log canonical threshold (4/9),
and that a suitable weighted blow-up improves the situation. We then analyze the resulting
modification of DCY.

Analytic locally at the intersection point, DCY
0 has equation x2(x−y3) = 0. If t is an analytic

coordinate vanishing at 0 ∈ T , then the total space (X CY,DCY) is a hypersurface and near
the singular point on the central fiber it has analytic local equation

G (x ,y ,t ) = x2(x − y3) +
∑
n≥1

tngn (x ,y) = 0.
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Making a weighted blow-up depends on the coordinate system, so to start we want to ensure
we are working in an ideal coordinate system for the equation G . To a system of coordinates
x and y we associate the number

Z (x ,y) := max
{
9 − 3i − j

n

���� n ≠ 0, and the monomial x i y j tn appear
with nonzero coe�cient in G (x ,y ,t )

}
.

Now, for any n > 0 there are only finitely many monomials x i y j tn such that (9−3i − j )/n > n .

On the other hand, there is a positive lower bound on Z (x ,y) that is independent of the change
of coordinates

x̄ = x + th1(x ,y) and ȳ = y + th2(x ,y)
given by 1/N where N is any power of t that annihilates the cokernel of the relative normal
sequence

TP2
T /T
|DCY→ODCY (DCY).

Here we are using that DCY is a smoothing of DCY
0 . Therefore, we may assume that there is

no change of coordinates x̄ , ȳ such that Z (x̄ , ȳ) < Z (x ,y).
Define k to be the minimal power of t such that there is a monomial x i y j tk that achieves

the maximum in Z (x ,y). Let w = 3i + j (necessarily ≤ 8) and consider the base change that
takes a (9 − w)th root of t , i.e. set s (9−w) = t . The base change of DCY has analytic local
equation: G (x ,y ,s (9−w)) = 0. Let

` : Y→X
be the weighted blow-up of the base change of X CY where the coordinates (x ,y ,s ) have weights
(3k ,k ,1), and let DY be the strict transform of DCY. In these weights, we can compute:

wt(s (9−w)nx i y j ) = 9n − nw + k (3i + j ).

Thus the minimal possible weight is 9k . So the exceptional divisor of ` is a degree 9k curve
in P(3k ,k ,1). There is an isomorphism of the exceptional divisors P(3k ,k ,1) with P(3,1,1)
(this is the cone over the twisted cubic) given by [x : y : s ] ↦→ [x : y : s k ]. This is not
to say that Y is isomorphic to a (3,1,1) weighted blow-up. Generically Y has Ak−1-surface
singularities along the locus (s = 0) ⊂ P(3k ,k ,1) ⊂ Y .

The surface DY is S2 and birational to DCY. The curve DY ∩ P(3,1,1) ⊂ P(3,1,1) is a
degree 9 curve. Every component of DY ∩ P(3,1,1) is rational and the curve when thought
of in P(3k ,k ,1) is defined by the lowest weight monomials inG (x ,y ,s (9−w)). The intersection
with the line (s = 0) ⊂ P(3k ,k ,1) is x2(x − y3) = 0. Thus there is at most one nonreduced
component of DY ∩ P(3k ,k ,1) of multiplicity at most 2. Moreover there are no components
with degree not divisible by 3, as the curve does not meet the cone point of P(3,1,1). Finally,
we have that the intersection graph of the normalization (Dnorm

Y )0 is still a tree.

Now we show that our assumption that the coordinates (x ,y) minimize Z (x ,y) implies
that DY ∩ P(3,1,1) ≠ 2C1 + C2 where C1 and C2 are smooth, degree 3 rational curves in
P(3,1,1) that meet to length 3. Suppose to the contrary that DY has these two exceptional
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components. Denote by [x : y : v ] the coordinates on P(3,1,1) (so v = s k in the isomorphism
P(3k ,k ,1) � P(3,1,1)). Then the curves have equations:

C1 =
(
x + s f2(y ,v ) = 0

)
,C2 =

(
x + (y + _v )3 = 0

)
⊂ P(3,1,1)

where f2(y ,v ) is a quadratic polynomial in y and v . The condition that C1 and C2 meet to
order 3 implies (after substitution) that

(7) v f2 + (−y − _v )3 = (ay + bv )3.

Now, if v divides f2 then f2 = 0 (considering both sides modulo v2 shows that the first two
coe�cients of the expanded cubes are the same, which implies they are equal). So either
f2 = 0 or v does not divide f2.

Lifting the equation for C to the exceptional divisor P(3k ,k ,1) under the isomorphism
s ↦→ s k = v shows DY ∩ P(3k ,k ,1) has equation

(x + s k f2(y ,s k ))2(x + (y + _s k )3) = 0

Expanding this equation, all s exponents are divisible by k . On the other hand, this equation
is the tangent cone of an equation pulled back under the map s ↦→ s (9−w) so all the s exponents
of the expansion are divisible by (9 −w). After expanding the coe�cient of x is

2s k (y + _s k )3 f2(y ,s k ) + s 2k f 22
If f2 ≠ 0 then s divides the right hand side to order exactly k , thus k = (9 − w)ℓ for some
ℓ > 0. Similarly if f2 = 0 then analyzing the x2 term shows that k = (9 −w)ℓ for some ℓ > 0.
As a consequence, the change of coordinates

x̄ = x + s k s2(y ,s k ), ȳ = y + _s k

lifts to the change of coordinates:

x̄ = x + tℓ s2(y ,tℓ ), ȳ = y + _tℓ

prior to the base change.

Now we claim that this gives Z (x̄ , ȳ) < Z (x ,y), giving the desired contradiction. Suppose
that the monomial x i y j tn appears with nonzero coe�cient inG (x ,y ,t ). We need to study the
monomials that appear in the expansion of

(x̄ − tℓ s2(ȳ − _tℓ ,tℓ ))i (ȳ − _tℓ ) j tn .

Observe that if (x̄ , ȳ ,t ) are given weights (3ℓ ,ℓ ,1) then every monomial that appears has
weight ℓ (3i + j ) + n. Suppose x̄ i ′ ȳ i ′tn ′ appears in this expansion. Now:

(9 −wn)/n ≤ (9 −w)/k = 1/ℓ ⇐⇒ (9 −wn)ℓ ≤ n
⇐⇒ (9 −w ′)ℓ + (w ′ −wn)ℓ ≤ n ⇐⇒ (9 −w ′)ℓ ≤ n +ℓ (wn −w ′)

⇐⇒ (9 −w ′)ℓ ≤ (9 −w) (n +ℓ (wn −w ′)) ⇐⇒ (9 −w ′)/n′ ≤ 1/ℓ = (9 −w)/k .

So we know Z (x̄ , ȳ) ≤ Z (x ,y). The only terms that can achieve equality in the above inequali-
ties are the monomials x i y j tn such that (9−3i− j )/n = (9−w)/k , which are exactly the lowest
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weight monomials with respect to the (3ℓ ,ℓ ,1)-weighting. But this change of coordinates has
been chosen so that after the change of coordinates, the lowest weight part of G (x̄ , ȳ ,t ) is
exactly x̄2(x̄ + ȳ3). Thus Z (x̄ , ȳ ,t ) < Z (x ,y ,t ) — a contradiction.

We have now shown that there is a weighted blow-up improving the worst singularity (the
point of intersection of the non-reduced cubic and inflection line), and this results in two
cases to consider: first, the curve in the exceptional divisor P(3,1,1) is reduced, or that the
curve in P(3,1,1) is non-reduced. In this case, as the curve avoids the singular point of
P(3,1,1), it is necessarily the union of a doubled degree 3 curve and another degree 3 curve,
which can meet to order at most 2 at any point. �

Lemma 7.7. In the weighted blow-up and notation from Lemma 7.6, if the intersection of the strict
transform of DCY with the exceptional divisor P(3,1,1) is reduced, it must be a degree 9 curve with
a unicuspidal singularity locally of the form x2 = v15.

Proof. We continue to use the notation from Lemma 7.6 and its proof. Suppose the curve
DY ∩ P(3,1,1) ⊂ P(3,1,1) is reduced. By the observations above, this curve has degree 9 in
P(3,1,1) and all components are rational. The curve C := DY ∩ P(3,1,1) must intersect the
line (v = 0) to order 3 in two smooth points of the surface.

If C is reducible, because every component has degree a multiple of 3 on P(3,1,1), it has
either two or three components. If the curve C had two reduced components C1 and C2 of
degrees 6 and 3, the degree 6 component must be rational (and hence singular), but cannot
have any singularities away from (v = 0) as they would have a non-zero contribution to the
X-invariant of the curve, impossible by Remark 5.1. Because one of the intersections of C
with (v = 0) is smooth with order 1, it cannot be a singular point of C1, so in fact C1 can
have only one singularity, a double point on the line (v = 0), which must be the singular
point of C1. However, this implies that the intersections of the components C1 and C2 lie
entirely away from the line (v = 0), and these intersections must be transverse because they
have X-invariant 0 (Remark 5.1). This is impossible as the dual graph is a tree. For the same
reasoning, it is impossible that the curve C has three reduced degree 3 components.

If the curve C is irreducible, it is rational so must be singular, and by the argument above,
can have only one singularity, a double point on the line (v = 0). In order forC to be rational,
this forces C to have a singularity analytically locally of the form x2 = v15. The reduced case
will be concluded by the next lemma. �

Lemma 7.8. An isolated singularity of the form x2 = v15 does not exist on an irreducible degree 9
curve in P(3,1,1).

Proof. Suppose such a curve C exists. We will transform this curve to a rational quintic curve
on P2 with a two singularities with Newton pairs (2,3) and (2,11). First, resolve the 1

3 (1,1)
singularity on P(3,1,1), which creates a −3 curve that does not intersect C . Let F be the fiber
of the ruled surface F3 through the singular point of C , and blow up the singular point with
exceptional divisor E, then contract the strict transform of F . The resulting surface is F2,
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and the image of the curve C has a (2,13) singularity on its intersection with the image of E,
and the image of C meets the negative section of F2 transversally. Now, blow up the singular
point of the image of C and contract the image of E . We are now in F1, and the image of
C has a (2,11) singularity and meets the negative section of F1 to order 2. Contracting the
negative section yields a curve in P2 with a (2,11) and (2,3) singularity. Because the curve
was initially a degree 3 multi-section of F3 and met the −1 curve in F1 to order 2, the resulting
curve in P2 has degree 5. However, by the classification of cuspidal quintic plane curves in
P2 in [25, 6.1.3], this curve does not exist. �

Now we are in the position to complete the proof of Proposition 7.4.

Proof. Suppose for contradiction that (X CY
0 ,DCY

0 ) = (P
2,R + 2N ), where R is a line in P2

and N is a smooth cubic meeting R at one point to with length 3, and recall that the central
fiber of the normalization Dnorm

0 necessarily contains 2 curves: the curve whose image in
(X ,D) is the smooth curve D0 (which double covers the doubled elliptic curve, and by abuse
of notation we will also denote by D0) and the strict transform of the line. By Lemma 7.6,
there is an appropriate weighted blow-up of the intersection point of R and N in the family
(X CY,DCY) with exceptional divisor isomorphic to P(3,1,1) improving the singularity. By
Lemma 7.7, if the strict transform DY in this weighted blow up has C := DY ∩ P(3,1,1)
reduced, it must have a singularity analytically of the form x2 = v15. By Lemma 7.8, this is
contradiction as this singularity does not exist. Therefore, C must be non-reduced. Then, as
all components have degree a multiple of three, DY ∩P(3,1,1) is necessarily the union of two
curves C1 + 2C2 where C1 and C2 both have degree 3. By Lemma 7.6, the curves cannot meet
at a single point to length 3 as this contradicts the choice of weighted blow-up. If there are 3
points in the intersection then using the inequality in Theorem 4.8, we obtain a contradiction
to the fact that the intersection graph of (Dnorm

Y )0 is a tree.

It remains to consider the case of 2 intersection points, in which case C1 and C2 must meet
transversely at one point and to order two at the other point.

A sketch of (DY )0 and its intersection graph.

P(3,1,1)P̃2

Δ

2N

R

2C2

C1 2 2

As the intersection graph of (Dnorm
Y )0 is a tree, it is necessary that the curve C2 breaks into

two componentsCU andCV in the normalization. An easy analysis of the possible intersection
graphs shows that (Dnorm

Y )0 can be a tree only if one (and not both) of the curves CU or CV

meets D0 in (Dnorm
Y )0.
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To reach a contradiction, we want to show that both branches CU and CV both meet D0 in
(Dnorm

Y )0. This can be checked analytically locally around the intersection point p ∈ N ∩C2.
Analytic locally DY can be described as a `k -quotient of a divisor in a simple normal crossing
degeneration. More precisely, consider the threefold in a�ne space A4 with coordinates
(x′,y ′,z ′,t ′):

Y1 = (y ′z ′ = t ′) ⊂ A4

and consider the action of the k -th roots of unity `k = 〈Z〉 that sends y ′ ↦→ Zy ′, z ′ ↦→ (Z−1)z ′,
and fixes x′ and t ′. Then there is an analytic local isomorphism (Y1/`k ,0) � (Y,p) (by abuse
of notation we use Y1 to denote an analytic neighborhood of 0 that gives rise to such an
isomorphism). Under the analytic map

d : Y1→Y

we can assume that the equation of `k -invariant divisor D1 := d∗DY is given by

D1 =

(
(x′)2 + t ′f (x′,y ′k ,z ′k ,t ′) = 0

)
⊂ Y1.

Assume, without loss of generality that in this neighborhood d maps the curve (t ′ = x′ =
y ′ = 0) dominantly onto C2 and (t ′ = x′ = z ′ = 0) onto N , and by construction, note that
(Y1,

1
2D1 + (Y1)0) is log canonical.

Now we defineYi+1 and Di+1 iteratively as follows. Assume that there is only one curve in
Di that dominates (t ′ = x′ = y ′ = 0) ⊂ Y1 (i.e. the branches have not been separated yet).
Then blow-up the reduced ideal of this curve in Yi to arrive at ci+1 : Yi+1 → Yi and let Di+1
be the strict transform of Di . Because KYi+1 + 1

2Di+1 + (Yi+1)0 = c∗(KYi + 1
2Di + (Yi )0), the pair

(Yi+1, 12Di+1 + (Yi+1)0) is log canonical by [20, Lem. 2.30]. By induction Yi has a natural `k -
action, Di is preserved by this `k -action, and the ideal of the blown-up curve has a natural
equivariant structure. Thus Yi+1 carries a natural `k -action and Di+1 is preserved by this
action. After ℓ > 1 blow-ups, Dℓ has two distinct branches that each map isomorphically
onto (t ′ = x′ = y ′ = 0). The natural map:

Yℓ /`k→Y

is birational onto the original analytic neighborhood of p ∈ Y . It follows that the pair
(Yℓ , 12Dℓ + (Yℓ )0) is log canonical and hence (Yℓ /`k , ( 12Dℓ + (Yℓ )0)/`k ) is log canonical by [20,
Prop. 5.20]. Therefore Dℓ cannot contain any components of the double locus (non-normal
locus) ofYℓ (otherwise, the pair would not be log canonical). Therefore, the quotient Dℓ /`k
is an S2 partial normalization of DY which separates CU and CV . However, each blow-up has
been the blow-up of a smooth curve in Yi , so the total space remains ℚ-factorial, and hence
both branches CU and CV must intersect (the strict transform of) N . Therefore, by Corollary
3.8, both branches CU and CV intersect D0 (the pre-image of N ) in (Dnorm

Y )0, and we have
reached a contradiction. �
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